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ABSTRACT 

This thesis concerns itself with computer-aided techniques for design 

centering, tolerancing and tuning, fault location and model parameter identification 

from measurements. 

Since many of the engineering system problems discussed in this thesis are 

formulated as optimization problems we examine algorithms and techniques for 

nonlinear optimization. Our attention is focused on minimax and €1 algorithms since 

many formulations of engineering system problems exploit the characteristic features 

of these two norms. 

A novel approach for worst-case network design is proposed and an 

algorithm for the fixed tolerance problem embodying worst-case search and selection 

of sample points is presented. 

The features of the €1 norm in the tuning problem are discussed in detail 

and explained using necessary conditions for optimality of the nonlinear €1 problem 

with nonlinear constraints. Regular and singular f1 problems are defined and a 

criterion for determining a singularity present in the f1 problem is formulated. 

New formulations using thee 1 norm are given for fault isolation and model 

parameter identification in analog circuits. 

Practical engineering problems have been solved illustrating the wide 

applicability of the concepts used and the robustness of the algorithms employed. 

A new algorithm for minimizing the cardinality of a set subject to 

nonlinear, nondifferentiable constraints is presented and illustrated by solving the 

best mechanical alignment problem. The load shedding and generation rescheduling 

problem in power systems is formulated using the f1 norm. The formulation is tested 
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on 6-bus and 26-bus power systems. A general microwave multiplexer design 

procedure exploiting exact network sensitivities is introduced and illustrated by 

designing 5-channel, 11 GHz and 12-channel, 12 GHz multiplexers. 
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1 
INTRODUCTION 

The increasing size and complexity of physical man-made engineering 

systems necessitate the use of computers in all aspects of the design, production and 

maintenance processes. A corresponding need has developed for efficient and 

powerful computer-aided techniques for thorough study and optimal realization of the 

above mentioned processes. 

Computer-aided design (CAD) techniques are now well established for 

design centering, tolerance optimization, yield maximization, cost minimization and 

the rapidly increasing range of applications includes electronic circuits, power 

systems, microwave systems and mechanical systems. 

Computer-aided design is often treated together with computer-aided 

manufacturing (CAM). We are not including CAM in this thesis, since CAM starts 

from data, preferably machine-readable data, that is produced in the design process, 

but CAM is not part of the design process itself. 

Computer-aided testing (CAT) techniques, which originated from the area 

of digital circuits, are primarily associated for analog circuits with the problems of 

fault location, model parameter identification from measurements and postproduction 

tuning. 

Recently, the term computer-aided engineering (CAE) has been used most 

frequently for turnkey software and hardware systems for electronic systems and 

component design. It has also been used in a more general sense to include a broad set 

of system analysis tools applicable in many engineering disciplines. 

l 
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Most of the discussion in this thesis focuses on computer-aided engineering 

system problem solving, in which key elements are formulations of the problems, 

algorithms for solving the problems and software implementing the methods 

proposed. 

Many of the subproblems associated with overall problems in different 

engineering disciplines are similar to each other. This motivates us to utilize a 

conceptual framework developed over the past ten years for design centering, 

tolerancing and tuning (DCTT) and for fault analysis, postproduction tuning and 

model parameter identification from measurements. Our aim is to provide a set of 

methods and techniques for solving these problems which employ recent optimization 

algorithms with the emphasis on nonlinear minimax and f1 algorithms . Our 

attention is focused on minimax and f1 algorithms since many formulations of 

engineering system problems exploit the characteristic features of these two norms. 

We do not presume to be able to solve all problems associated with any 

overall engineering system. Applications of the methods and techniques proposed 

will be immediately apparent in many cases. Often it will also occur that familiarity 

with the concepts and techniques will clarify certain problem aspects which have been 

obscured or unrecognized. 

In Chapter 2 previous work in the area of design centering, tolerancing and 

tuning is reviewed. We consider the relevant fundamental concepts and definitions 

commonly used in the DCTT literature. Three general formulations of the optimal 

DCTT problem are given and some important special cases are described in more 

detail. We provide also an adequate state-of-the-art review of algorithms for DCTT 

problems. 
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Chapter 3 deals with the use of minimax optimization techniques in 

computer-aided engineering. A critical review of the existing minimax a lgorithms is 

given together with a comparison of minimax algorithms using the classical three

section transmission-line transformer (Bandler and Macdonald 1969a). The Hald and 

Madsen algorithm (Hald and Madsen 1981) is treated in some detail and its 

performance is demonstrated on regular and singular problems. A detailed 

description of the algorithm is given in Appendix A. A novel approach to worst-case 

network design is proposed and an algorithm for the fixed tolerance problem 

embodying worst-case search and selection of sample points is presented. 

Chapter 4 covers the use of f1 optimization techniques in computer-aided 

engineering. Previous work in the area of nonlinear f1 optimization is briefly 

reviewed. The Hald and Madsen algorithm (Hald and Madsen 1985) for nonlinear f1 

optimization is presented in some detail in Appendix C. The features of the f1 norm 

in the tuning problem are discussed in detail and explained using necessary 

conditions for optimality of the nonlinear f1 problem with nonlinear constraints. 

Regular and singular f1 problems are defined and a criterion for determining a 

singularity present in the e 1 problem is formulated. New formulations using the e 1 

norm are given for fault isolation and model parameter identification in analog 

circuits. 

The next three chapters, Chapter 5, 6 and 7, contain major applications of 

the concepts and methods described earlier. [n each case , a difficult engineering 

problem has been solved illustrating the wide applicability of the methods proposed 

and the robustness of the algorithms used. 

Chapter 5 describes a minimax approach to the best mechanical alignment 

problem. A new algorithm for minimizing the cardinality of a set subject to nonlinear, 



4 

·nondifferentiable constraints 1s presented -and illustrated by solving practical 

problems. 

Load shedding and generation rescheduling in power systems using the f1 

norm is treated in Chapter 6. A new formulation for the problem is proposed and 

tested using 6-bus and 26-bus systems. 

In Chapter 7, optimal design of microwave multiplexing networks is for

mulated as an optimization problem. A general multiplexer optimization procedure 

exploiting exact network sensitivities is illustrated by designing 11 GHz, 5-channel 

and 12 GHz, 12-channel multiplexers. 

We conclude in Chapter 8 along with some suggestions for further research. 

The author contributed substantially to the following original 

developments presented in this thesis: 

(1) An algorithm for the fixed tolerance problem embodying worst-case search 

and selection of sample points . 

(2) Mixed programming formulation of the tuning problem ensuring that the 

solution gives the minimum number of tunable parameters. 

(3) A new formulation for fault isolation in analog circuits using the f 1 norm 

and an exact penalty function . 

(4) An algorithm for minimizing the cardinality of a set subject to nonlinear, 

nondifferentiable constraints. 

(5) A formulation of the load shedding problem in power systems using the f 1 

norm. 

(6) A procedure for optimal design of microwave multiplexers using f1 and 

minimax optimization. 



2 
DESIGN CENTERING, TOLERANCING AND TUNING (DCTT) - A REVIEW 

2.1 INTRODUCTION 

The development of new design procedures and techniques can, in general, 

be characterized as an attempt to include in the design process as many factors which 

may influence the performance of a manufactured design as possible. With readily 

available and ever increasing computing power at hand, computer-aided designers 

are dealing with more realistic problems. We should not, however, rely only on the 

computing power of modern machines since besides economical considerations there 

exist physical limits to what is practically achievable. Bremermann (1962) 

determined by simple physical considerations that " ... no data processing system 

whether artificial or living can process more than 2x1Q47 bits per second per gram of 

its mass". 

In the classical design problem we are interested in finding one single point 

in the design parameter space which satisfies the design specifications. This kind of 

solution is impractical from the manufacturing point of view since there is a number 

of factors which influence the performance of a manufactured design. 

Phenomena associated with the design of circuits and which can be 

considered are (Bandler and Rizk 1979): 

(a) manufacturing tolerances (i.e., the actual value of the design variable 

outcome may lie within an interval with a certain probability density 

function) ; 

5 
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(b) model uncertainties; equivalent circuits are used to model actual circuits 

and the parameters of equivalent circuits usually have uncertainties 

associated with them; 

(c) parasitic effects; these parasitics can substantially alter the ideal circuit 

performance and should be taken into consideration where possible; they 

are marked in many analog electrical circuits (adive, high frequency, etc .); 

(d) environmental uncertainties; some circuits have to meet stringent 

specifications for a variety of different environmental conditions; military 

and telephone equipment, for example, often has to be designed for extreme 

temperatures; 

(e) mismatched terminations; network terminations or loads may be 

substantially different from ideal; 

(f) material uncertainty; uncertainties exist in the materials used to fabricate 

the circuits. 

Taking into account in the design process the above mentioned factors, if at 

all possible, is usually in conflict with the feasible or acceptable computational effort 

involved. Therefore, a successful design procedure is usually a compromise between 

the complexity of the model and the computational cost to produce a design satisfying 

all specifications. 

In the next section we consider the relevant fundamental concepts and 

definitions commonly used in the DCTT literature. 
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2.2 FUNDAMENTAL CONCEPTS AND DEFINITIONS 

The mathematical formulation of an approach which embodies centering, 

tolerancing and tuning in a unified manner was presented by Bandier, Liu and Tromp 

(1976a). 

A design consists of design data of the nominal point q>O, the tolerance 

vector c and the tuning vector t, where 

e 
n 

and ti 

t 
n 

n is the number, for example, of network parameters which may be indexed by 

I<l>~{l, 2, ... , n} . 

(2.1) 

(2.2) 

We will assume that the parameters can be varied continuously and that 

the parameters can be chosen independently. Extra conditions such as discretization 

and imposed parameter bounds may be treated as constraints, see Bandier, Liu and 

Chen (1975). Some of the parameters can be set to zero or held constant. 

An outcome {<I>, c, µ} of a design {<I>, c, t} implies a point in the parameter 

space given by 

<I> = <l>o + E µ , (2.3) 

where 
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E ti 

e 
n 

(2.4) 

and µ E Rµ. Rµ is a set of multipliers determined from realistic situations of the 

tolerance spread. We consider 

R ~{µ I - 1 :-:::: µ. :-:::: - a. 
µ l l' 

a. :-:::: µ. :-:::: 1 , i E IJ, 
l l '¥ 

(2.5) 

where 

(2 .6) 

The most commonly used continuous range is obtained by setting ai to zero . Unless 

otherwise stated, the case 

R ~ {µ I - l :-:::: µ. :-:::: 1, i E IJ, 
µ l '¥ 

(2 .7) 

is considered (Bandier and Liu 1974). 

The tolerance region R8 , as described by Butler (1971) and Bandier (1972, 

1974), is a set of points defined by (2.3) for allµ ERµ- In the case of - 1 :-:::: µi :-:::: 1, i E Icp, 

R ~ {<l> l <t>- = <po+ e. µ., - 1 :-:::: µ. 51, iE IJ, 
e 1 1 1 1 1 "' 

(2.8) 

which is a convex regular polytope of n dimensions with sides of length 2 ei, i E Icp, and 

centered at 4>0. The extreme points of Re are obtained by setting µi = ± 1. Thus, the 

set of vertices may be defined as 

R ~ {<l>l<t>. = <t>o+e. µ, µ.E{ - 1,1}, iEIJ. 
V l 1 l l l '¥ 

(2.9) 

The number of points in Rv is 2°. Let each of these points be indexed by <pi, i E Iv, 

where 

Iv~{l,2, ... ,2°}. (2.10) 

The tuning region Rt(µ) is defined as the set of points (see Bandier, Liu and 

Tromp 1976a) 
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<l> = <l>o + E µ + Tp (2 .11) 

for all p E Rp, where 

(2.12) 

t 
n 

Some of the common examples of Rp are 

R~{p l- l5p.5l, iEIJ, 
p l 't' 

(2.13) 

or in the case of one-way tuning or irreversible trimming, 

R ~{plO 5 p . 5 1, iE IJ, 
p l 't' 

(2.14) 

or 

R ~{p I - 1 5 p 5 0, i E I,,J. 
p l 't' 

(2.15) 

The constraint region Re is defined as (Butler 1971, Baudler 1972, 1974), 

R ~{ <l> I g.(q>) ~ 0, i EI }, 
e l e 

(2.16) 

where 

(2 .17) 

is the index set for the performance specifications and parameter constraints. Re is 

assumed to be nonempty. 

The definitions and concepts presented are illustrated in Fig. 2.1 by a two-

dimensional example. 

2.3 THREE FORMULATIONS OF THE OPTIMAL DCTT PROBLEM 

2.3.1 General Nonlinear Programming Formulation with 

Differentiable Constraints 

The first general formulation of the optimal DCTT problem was given by 

Baudler, Liu and Tromp (1976a). The problem was stated as follows: obtain a set of 
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Fig. 2.1 Illustration of concepts in design centering, tolerancing and tuning. 

(Bandler, Liu and Tromp 1976a) . 
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optimal design values {<l>O, e, t} such that any outcome {<l>O, e, µ}, µ E Rµ, may be tuned 

into Re for some p E Rp. It was formulated as the nonlinear programming problem: 

minimize C (<l>o, e, t) (2.18) 

subject to 

<I> E R (or g(<l>) ~ 0) , 
c 

(2 .19) 

where 

<I>= <l>o + E µ + Tp (2.20) 

and constraints <1>0, e, t ~ 0, for all µ E Rµ and some p E Rp. C is an appropriate 

function chosen to represent a reasonable approximation to known component cost 

data. 

Stated in an abstract sense, the worst-case solution of the problem must 

satisfy 

Rt(µ) n Re ':,t:. 0 

for all µ E Rµ, where 0 denotes an empty set. 

(2.21) 

They also discussed the geometrical structure of the problem and 

introduced some important special cases obtained by separating the components into 

effectively tuned and effectively toleranced parameters. They proved that the 

solution of the reduced problem is the solution of the original one under certain 

conditions. 

2.3.2 General Nonlinear Programming Formulation with 

N ondifferentiable Constraints 

Polak and Sangiovanni-Vincentelli (1979) formulated the DCTT problem 

as a mathematical programming problem in the form 

minimize C(<l>0, e, t) 

subject to 
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min min max g. (q>) ~ 0 
I 

(2.22) 

iEI µER pER 
c µ p 

and the constraints 4>0, £, t ~ 0, where <l> is given in (2.20). They demonstrated that 

their formulation is equivalent to the one in Bandler, Liu and Tromp (1976a). They 

suggested a new algorithm which deals with the nondifferentiable constraints (2 .22). 

The algorithm solves the problem as a sequence of approximating problems with Rµi 

C Rµ as a discrete set. They showed that , under certain conditions, the accumulation 

points of the sequence of stationary points of the approximating problems are 

stationary points of the original problem. 

2.3.3 Formulation Based on Generalized Least pth Function 

A different formulation was presented by Bandler and Abdel-Malek 

(1978a). They introduced a generalized least pth function to convert a tolerance and 

tuning problem to an equivalent tolerance problem. An expanded constraint region, 

namely the tunable constraint region Rct, replaces the original region Re (see Fig. 

2.2). The region is given for p = oo by 

R i{<l> I max min g. (<l> + Tp) ~ O}, ct 1 

(2.23) 

pER iEI 
p c 

where <l> is given by (2.3). The authors based some definitions of yield upon Rct and 

described worst-case design and worst-case centering. 

2.4 SPECIAL CASES AND OBJECTIVE FUNCTIONS 

Several objective functions (or cost functions) have been proposed (Pinel 

and Roberts 1972, Pine! 1973, Bandler 1974, Karafin 1974, Bandler and Liu 1974). In 

practice, a suitable modeling problem would have to be solved to determine the cost-

tolerance-tuning relationship. We assume that the nominal parameter values, 
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Fig. 2.2 Geometric interpretation of the tolerance problem equivalent to the 

tolerance-tuning problem. (Bandler and Abdel-Malek 1978a) . 
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tolerances and tuning ranges (either absolute or relative) are the main variables and 

that the cost of the design is the sum of the cost of the individual components. 

Suitable objective functions will be , for example, of the form 

O ~ ( <t>~ · ti ) C (<l> , c, t) = L c. - + c. - , 
. I 8. I ,+. Q 
1=1 l '*'i 

(2 .24) 

where the Ci and c/ are nonnegative constants. These may be set to zero if the 

corresponding element is not to be toleranced or tuned, respectively. 

The special cases considered may be defined mathematically as a zero 

tolerance problem (ZTP), a fixed tolerance problem (FTP) and a variable tolerance 

problem (VTP) (Schjaer-Jacobsen and Madsen 1979, Bandler and Rizk 1979). 

Schjaer-Jacobsen and Madsen (1979) define the problems in terms of a set 

of m nonlinear differentiable functions of n real variables. In this presentation we 

define those problems using notation and concepts directly related to the design 

problem (Bandler and Kellermann 1983) . 

We do not include tuning in this chapter since it will be considered in much 

more detail than other problems in Chapter 4. 

2.4.1 The Zero Tolerance Problem (Centering Problem) 

In this problem we have c = 0 and t = 0. We want to find the nominal 

design q>O satisfying the design specifications g(q>) 2': 0, where <l> = q>O The problem 

is a pure centering problem in which a feasible , centered nominal design is found if Re 

:;z= 0. The solution may be useful at the initial stage of a design process when the 

designer has no prior experience with the problem and an initial rough a pproximation 

gives some insight. 

The problem can be conveniently formulated in minimax form as 



subject to 

where 
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minimize F(q> °) , 

<l> 0 

F(q>°) ~ max (-g. (q>°)). 
1 

i E I 
c 

2.4.2 The Fixed Tolerance Problem 

(2.25) 

(2.26) 

(2.27) 

Here we have c = const :;t: 0. We want to find <f>O, the center of the 

tolerance region Re, when the manufacturing tolerances on the components are fixed. 

This is basically a centering problem and can be formulated in minimax form as 

subject to 

where 

and 

minimize F(<I>°) 

<l> 0 

<l> = <l>o + E µ forallµ ER 
µ 

F(q>°) = max (- g . (q>)). 
1 

i E I 
c 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

Under certain assumptions (one-dimensional convexity of Re, see Fig. 2.3) it 

is sufficient to choose only the vertices of Re to form appropriate minimax functions. 

2.4.3 The Variable Tolerance Problem 

In this problem we have c :;t: const, t = 0. The manufacturing tolerances 

are considered as variables instead of as being fixed. 
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cl'. a cl>b(1) ··-----· 

Fig. 2.3 Illustrations of convex, one-dimensionally convex and nonconvex regions 

(Liu 1975). 
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The design problem can be formulated as 

minimize C(q>0, e) 

<I> o, e 

g (q>) ~ 0, 

where <I> is given by (2.3). 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

The objective function C is directly related to the component cost, and 

generally possesses the properties 

C(q>0
, e) - const as e - oo, 

C(q>0,e) - oo as e. - 0 . 
1 

A common form of this objective is 

n <Po 
IC. __.: ' 
. 1 i e. 
1 = 1 

where the c/s are positive constant weights. 

2.4.4 Generalized Tolerance Assignment Problem 

(2.36) 

Tromp (1977) has generalized the tolerance assignment problem so that 

physical tolerances, model uncertainties, external disturbing effects and dependently 

toleranced parameters can be considered in a unified manner. In essence, the 

approach begins with the definitions of the k0 i-dimensional vector q>oi, the ki-

dimensional vector q>i and the kµi-dimensional vector µi so that q>i is a function of q>oi 

and µi for all i = 1,2, ... ,n, and q>oi itself depends on all q>i-1 for i = 2,3, ... ,n. 

Input parameters, e .g., the physical parameters available to the 

manufacturer might be identified as q>l, whereas <t>n would be the output vector, e.g., 
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the sampled response of a system or the vector of constraints g, which defined the 

region Re. The quantities q>2, ... , <t>n-1 can be identified, for example, as intermediate 

or model parameters. The variables µi, i = 1,2, ... ,n, create the unavoidable or 

undesirable fluctuations and generally embody the unknown or intangible. Hence we 

let 

!:::. and µ = 
(2.37) 

The tolerance region in the <t> space is obviously no longer restricted to be 

an orthotope in this formulation . 

2.5 ALGORITHMS FOR DCTT PROBLEMS 

In worst-case design the whole tolerance region has to lie in the constraint 

region, i.e., it is required that 

This is design with 100% yield, where yield Y is given by 

!:::. number ofoutcomes which meet specifications y = ~~~~~~~~~~~~~--'~~~~~ 
total number of outcomes 

The 2n vertices of the tolerance region are usually the points considered as 

candidates for worst-case. There are two main reasons. The first is that it is 

impractical, or even impossible, to consider explicitly the infinite number of points 

contained in the tolerance region. The second is that one-dimensional convexity of the 

constraint region may be assumed. Bandler (197 4) proved, in this case, that it is 

sufficient for worst-case design to require that 
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RV c RC. 

An example of a worst case design and a design with yield < 100% is shown in Fig. 

2.4. 

2.5 .1 Vertex Selection Schemes 

For large problems, with a large number of variables, the number of 

vertices of the tolerance region becomes enormous. Selection schemes which include 

purging (dropping of constraints or vertices) as well as addition of vertices of the 

tolerance region during the optimization process alleviate the need for considering 2n 

vertices (Bandler, Liu and Chen 1975, Bandler, Liu and Tromp 1976b, Tromp 1977). 

One of these schemes (Bandler, Liu and Tromp 1976b) is based on iterative solution of 

necessary conditions for the worst vertex derived from the Kuhn- Tucker conditions . 

These methods rely on the assumption that the constraint region is one-dimensionally 

convex. 

Schjaer-Jacobsen and Madsen (1979) suggest the application of interval 

arithmetic for solving the worst-case problem which guarantees that the worst case is 

always found . By solving the worst-case problem as described by them, no 

information is gained about where in the tolerance interval the worst case is attained. 

In their method the one-dimensional convexity assumption is not required, and the 

worst case can lie at an edge of the tolerance region instead of at a vertex. 

2.5.2 Simplicial and Quadratic Approximations 

The tolerance problem described earlier implicitly solves the centering 

problem, in which we are interested in finding a "center" of the constraint region. 

Another approach is one developed by Director and Hach tel (1977). It is concerned 
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design with yield< 100°/o 

worst-case 

Fig. 2.4 Example of a worst-case design and a design with yield < 100 percent. For 

the worst case design the set of active vertices is Sav = {1,3,4}. These 

vertices indicate critical regions where constraint violations are most likely 

to occur for a design with yie ld < 100 percent (Bandier and Abdel-Malek 

1978b). 
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with finding the center of the largest hypersphere inscribed in the constraint region 

(see Fig. 2.5). In the process, an internal approximation to the region is obtained. The 

problem of finding the largest hypersphere is solved by a sequence of linear 

programming problems. 

Bandler and Abdel-Malek (see Bandler and Abdel-Malek 1978b, Abdel

Malek and Bandler 1980a, 1980b) proposed a method (in the context of yield 

optimization) in which approximations are made to both the constraint region and the 

yield integral over the constraint region. The method assumes that the parameters of 

the circuit have a joint probability density function which is truncated or adequately 

represented by an orthotopic truncated distribution over a region with fixed volume 

but whose position depends on the nominal parameter values. Using the 

regionalization they approximate the failure rate (1- Y) in two steps. First the 

intersection of the tolerance region Re and the constraint region Re is approximated 

with a quadratic approximation. This approximation is updated as the nominal point 

changes and only generated in those areas where Re(<l>O) violates the constraint 

region. Then the quadratic approximation is linearized about the points where the 

orthotope Re intersects the quadratic approximation to Re n Re. Because their 

approximation to the failure rate is analytical it is possible to differentiate it to find 

the gradient of the yield w.r.t. the nominal point 4>0. 

2.5.3 Cut-Map Algorithms for Tolerancing and Tuning 

Many algorithms for design problems with parameter tolerances assume 

one- dimensional convexity of the constraint region (or the set of feasible nominal 

designs). Mayne, Polak and Voreadis (1982) presented an algorithm for the tolerance 

problem which is suitable for the nonconvex problem. 
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constraint 
L-,~-

region 

linear search 

(a) Initial search for boundary points. 

linear search 

(b) The polytope approximating the boundary of the constraint 

region after two iterations. 

Fig. 2.5 Illustration of the simplicial approximation approach (Director and 

Hachtel 1977). 
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The design problem requires the solution of the infinite dimensional 

g (q,0 + E µ) 2: 0 for all µ E R µ. 

Let Re denote the feasible set for the tolerance problem, i.e., the problem 

where q> = q,O + E µ for allµ E Rl-1. One method of solving such a problem is the outer 

approximations algorithm described in Mayne, Polak and Trahan (1979). This 

replaces the infinite-dimensional feasibility problem by an infinite sequence of 

conventional (finite-dimensional) feasibility problems where Rµi is a finite subset of 

Rµ. 

The cut-map algorithm approximates Re' (the complement of Re) by the 

union of a finite number of very simply described regions. Typically, at iteration i, Re ' 

is approximated by Wi ~ U {B(q,jO, rj)I j <i} (or a subset of this set), where B(q,jo, rj) 

denotes an open ball with center q,jO and radius rj > 0, such that Ren B(q,jo, rj) = 0. 

Clearly Ren Wi = 0 so that Re C Wi ', that is Wi' is an outer approximation 

to Re of a particularly simple kind. The algorithm proceeds by determining any cl>io in 

Wi' and then computing ri; ri = 0 implies that cl>io lies in Re. Rules for computing ri and 

constructing Wi are given and represent extensions of the conceptual algorithms of 

Eaves and Zangwill (1971). 

In Voreadis and Mayne (1982) the idea of cut-map algorithms is extended to 

the case when tuning is also present. Both algorithms, however, are suitable only for 

the case when the tolerance and tuning regions are constant. 

2.5.4 Function Splitting for the Tolerance Problem 

Sophisticated algorithms for the fixed and variable tolerance problem are 

presented by Brayton, Director, Bachtel and Vidigal (1979) . One-dimensional 
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convexity is assumed. The nondifferentiability of the worst case function 

max f. (q> ), or 
l 

max ( - g (q>)) , 
l 

q>ER 
£ 

<t>ER 
£ 

i E le, is coped with by "function splitting". The idea of function splitting is to treat a 

single function as if it were simultaneously several different functions. Since the 

worst case of a single function can occur simultaneously at two different vertices, say 

µ(i1) and µ(i2), then it is natural to treat f(q>O + E µ(i1)) and f(q>O + E µfo)) as two se-

parate functions and to employ both gradients, f '(<t>O + E µ(i1)) and f ' (<t>O + E µ(i2)), 

in the optimization algorithm. The worst case function is not differentiable at q>O but 

possesses a generalized gradient which is the convex hull off ' (<t>O + E µ(i1)) and f'(<t>O 

+ E µ(i2)). A vertex list, updated at each iteration, defines the function and gradient 

information supplied to a quadratic program to determine a search direction. 

2.5.5 MINMAX-MINBOX Linear Programming Approach 

Hachtel, Scott and Zug (1980) proposed an interactive linear programming 

based method for optimization problems in worst case circuit design and device 

modeling. They propose a flexible objective MINMAX-MINBOX linear programming 

approach. The MINMAX linear programming design step, similar to the method 

developed by Schjaer-Jacobsen and Madsen (1979), asks the user to guess at the 

effective range of linearity of the specified objective functions, and then produces the 

minimum (over the n-dimensional design space) of the maximum (over the function 

indexes) function subject to this "box constraint". The MINBOX linear programming 

step asks the user to specify desired improved levels for the upper bounded objective 

functions. The MINBOX LP step either produces the smallest step 6.q> which achieves 

those levels or states that the levels are infeasible . 
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2.5.6 Related Algorithms 

In the design of electronic circuits , as in all types of design, the engineer is 

faced with making a decision in the presence of competing objectives. Lightner and 

Director (1981) presented a technique for multiple criterion optimization (MCO). 

They proposed user oriented weight selection heuristics for the weighted e"' solution 

to the MCO problem and generalized this idea for a family of weighted p-norms. 

Vidigal and Director (1982) described a design centering algorithm for 

nonconvex regions of acceptability which is basically a convergent sequence of 

subproblems, each of which has a convex region of acceptability. Convergent 

algorithms exist for the solution of these subproblems, e.g., Director and Bachtel 

(1977) or Bandler and Abdel-Malek (1978b) . 



3 
MINIMAX OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED 

ENGINEERING 

3.1 INTRODUCTION 

A wide class of engineering system problems can be formulated as 

optimization problems with the objective being the norm of the error functions w.r.t. 

specified or measured responses of a system. 

Many circuit design problems can be formulated naturally as minimax 

optimization problems. Most commonly, the minimax functions result from lower 

and/or upper specifications on a performance function of interest. In practice, we form 

error functions at a finite discrete set of frequencies, for example, and assume that a 

sufficient number of sample points ha ve been chosen so that the discrete 

approximation problem adequately approximates the continuous problem. This may · 

result in a large number of minimax functions to be minimized. Therefore, a highly 

efficient and fast algorithm for minimax optimization is of great importance to many 

system designers and engineers. 

In this chapter, the area of nonlinear m1rnmax optimization is briefly 

reviewed. The Hald and Madsen algorithm is treated in some detail. The ideas 

behind the algorithm are explained and illustrated with a microwave circuit example. 

We also present a comparison of the Hald and Madsen algorithm with other minimax 

algorithms, using a three-section transmission-line transformer problem. 

A novel approach to worst-case tolerance design of circuits is proposed . 

Previous work in this area has been concentrated on worst-case design techniques 

26 
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- disregarding the source of the minimax functions, i.e., the discretization of a 

continuous problem. Our approach integrates a search technique for maxima of the 

response (a technique based on cubic interpolation) with the worst-case search using 

linearly constrained optimization. 

3.2 INDEPENDENT PARAMETERS, PERFORMANCE FUNCTIONS AND 

SPECIFICATIONS 

In electrical circuit design, more t han one response function might have to 

meet given specifications. As an example, a circuit can be designed to meet desired 

specifications in both the frequency and the time domains (Bandler and Rizk, 1979). 

Graphically, this situation is shown in Fig. 3.1. In this case, we have more than one 

independent variable, q,, namely, q,1, q,2, ... , q,J\, where },. is the number of these 

independent variables. Accordingly, we have },. response functions Fl(<f>, q,1), 

F2(cp, q,2), ... , Fl(cp, q,l). In general, we can have },. upper specifications Sul(wl), 

Su2(w2), ... , Sul(q,J\) and},. lower specifications, Sel(q,1), Se2(q,2), .. . , Sel(q,J\)_ The error 

functions will be of the form 

j = 1,2, ... ,A, (3.la) 

j = 1,2, ... ,A, (3.lb) 

where wJ(q,j) and wej(q,j) are positive weighting functions and the subscripts u and e 

refer to upper and lower specifications, respectively . 

In a typical DCTT problem, the independent variable is the frequency and 

we are interested in the output response of the circuit at a discrete set of frequency 

points. Without loss of generality, we consider the following error functions 
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F,5 

frequency 

Fig. 3.1 Upper and lower specifications for an amplifier to be designed to operate 

over a specified temperature range (Bandler and Rizk 1979). 
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b. e ( <p) = e ( <p, l¥.) = w . (F. ( <p) - S ) , i E I , 
Ul U l Ul l Ul U 

(3.2a) 

(3 .2b) 

where 

(3.2c) 

Iu and le are index sets, not necessarily disjoint. Let 

j E I , 
u 

i E I , 
c 

(3.3) 

where 

u 

b. {1,2, ... ,n}, 
u 

(3.4) 

(3.5) 

I ~ {1,2, ... ,m}, 
c 

(3.6) 

and m = nu+ ne. Them functions 

(3 .7) 

characterize the circuit performance, which is monitored during the optimization 

process. 

If we let 

Mf(<p) ~ max f/<l>), 
i E I 

c 

then the sign of Mr indicates whether the specifications are satisfied or violated. 

3.3 REVIEW OF MINIMAX ALGORITHMS 

3.3.1 Formulation of the Problem 

(3.8) 

The mathematical formulation of the linearly constrained minimax 

problem is the following. Let 
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!::,. 
f/x) = fj(x 1,x2

,. ,xn), j = 1,2, ... , m, 

be a set ofm nonlinear, continuously differentiable functions . The vector x~ [x1 xz ... 

xnJT is the set of n parameters to be optimized. 

subject to 

We consider the optimization problem 

minimize F(x) t:,. ma x 'f(x) 
J 

x 

T 
a. x + b. = 0, 

l l 

aT x + b. ~ 0, 
l l 

i=1,2, ... ,e , 
eq 

i=(e +1), ... ,e, 
eq 

where ai and bi, i = 1, 2, ... , e, are constants . 

3.3.2 Methods Based on Linearization 

(3 9a) 

(3.9b) 

(3.9c) 

Over the past fifteen years, this type of problem has been considered by 

many researchers. Usually only the unconstrained problem is treated, however. But 

in some of the methods to be described, it is no complication and computationally 

costless to add linear constraints . Many of the minimax papers in the literature use 

the objective function 

" !::,. F(x) = max I f.(x) I , 
J 

J 

instead of F. There is no significant difference between these two optimization 

problems. We prefer (3.9) since it is notationally easier and more general. 

One of the earliest methods for solving the minimax problem was that of 

Osborne and Watson (1969). At the kth iterate, xk, their method uses a linear 

approximation of the nonlinear minimax problem, namely, 

minimize F (xk, h) ~ max {f/xk) + r/xkiT h }, (3.10) 

h J 
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where fj'(xk) denotes the gradient vector of fj w.r.t. x at the point Xk . The minimizer 

hk of (3.10) is found using linear programming and it is used in a line search. This 

method may be efficient, but often it is inefficient. No convergence can be guaranteed 

and the method can even provide convergence to a nonstationary point. Madsen 

(1975) incorporated trust regions in the Osborne and Watson method. The linearized 

problem (3.10) is solved subject to a local bound on the variable h, the bound being 

adjusted during the iteration. No line search is used. This method has been proved to 

provide convergence to the set of stationary points and has a quadratic final rate of 

convergence when the solution is regular (Madsen and Schjaer-Jacobsen 1976) . 

However, the rate of convergence may be very slow on singular problems. 

The method of Anderson and Osborne (1977) is very similar to that of 

Madsen. The main difference lies in the way of bounding the step length llhkll- A 

different approach was used by Bandler and Charalambous (1972). They presented an 

approach utilizing efficient unconstrained gradient minimization techniques in 

conjunction with least pth objective functions employing extremely large values of p. 

Charalambous and Conn (1978) apply an active set strategy to obtain a direction for a 

line search. 

All of these methods are first-order methods, i. e ., the search is based on 

first-order derivatives only. Therefore, all of these methods have problems with 

singular solutions and the rate of convergence may be very slow. 

3.3.3 Methods Using Second-Order Information 

In order to overcome this problem, some second-order (or approximate 

second-order) information must be used. Hettich (1976) was the first who proposed 

doing this. He used a Newton iteration for solving a set of equations which expresses 
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the necessary conditions for an optimum. However, Hettich's method is only local. It 

is required that the initial point be close to the solution and that the set of active 

functions (and constraints) is known. Han (1981) suggested nonlinear programming 

techniques for solving the minimax problem. He uses a nonlinear programming 

formulation of the minimax problem which is solved via successive quadratic 

programming (Powell 1978). A line search is incorporated using the minimax 

objective function as merit function. Overton (1979) uses an approach similar to 

Han's, but solves equality constrained quadratic problems and uses a specialized line 

search. 

The method of Watson (1979) is very similar to the method of Hald and 

Madsen (1981). It switches between a first- and a second-order method. The main 

differences between the Hald and Madsen algorithm and the Watson method are the 

following. Watson requires the user to provide exact first- and second-order 

derivatives whereas Hald and Madsen reqmre only first-order derivat ives. 

Furthermore, Watson fails to define a suitable set of criteria for switching between 

the first-order and the second-order methods. The Hald and Madsen method has 

guaranteed convergence to the set of stationary points whereas Watson's method has 

no such property. It can even provide convergence to a nonstationary point. 

3.4 THE HALD AND MADSEN MINIMAX ALGORITHM IN SYSTEM 

DESIGN 

3.4.1 General Description 

The Hald and Madsen algorithm for nonlinear minimax optimization (Hald 

and Madsen 1981) is a combination of the first-order method of Madsen (1975) and an 

approximate second-order method. The first-order method provides fast convergence 
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to the neighbourhood of a solution. If the · solution is singular (see Madsen and 

Schjaer-Jacobsen 1976), then the rate of convergence becomes very slow and a switch 

is made to the second-order method. Here, a quasi-Newton method is used to solve a 

set of nonlinear equations that necessarily hold at a local solution of (3.9). This 

method has superlinear final convergence. Several switches between the two methods 

may take place and the switching criteria ensure t he global convergence of the 

combined method. The user of this algorithm is required to supply function values 

and first-order derivatives whereas the necessary second derivative estimates are 

generated by the algorithm. 

For this thesis, we have used the MMLC version of the algorithm (Bandier 

and Zuberek 1982), based on the earlier implementation due to Hald (1981). 

The algorithm is described in more detail in Appendix A, where the two 

methods, namely, the first-order method (denoted Method 1) and the approximate 

second-order method (denoted Method 2) are presented and the switching conditions 

between the two methods are given. 

3.4.2 Performance of the Algorithm on Regular and Singular Problems 

When the solution is singular, the final rate of convergence of Method 1 can 

be very slow. Consider the example of Fig. 3.2 in two variables, where the two 

functions are active at the solution z (i.e. , fj(z) = F(z) for two values of j). Figure 3.2 

shows contours for a two-dimensional singular minimax problem arising from 

optimization of a two-section 10: 1 transmission-line transformer, where the minimax 

functions correspond to the reflection coefficient sampled at 11 normalized 

frequencies with respect to 1 GHz (0.5, 0.6, ... , 1.4, 1.5). The optimization variables 

are characteristic impedances Z1 and Z2. Section lengths f1 and f2 are kept constant 



5.5 

5.0 

4.5 

N 
N 

I 

4.0 I 

3.5 

34 

I 
.70 .65 

t, 

3.0,.._:..1 ___.i.___%_2 .L--1,----"'---'---'--,-----L---'-----r'---~-.------j 

Fig. 3.2 
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z, 

Two-dimensional singular minimax problem arising from optimization 
of a two-section 10:1 transmission-line transformer with optimization 
parameters Z1 and Z2. The first 6 iterations are performed using 
Method 1 of the algorithm. Iterations 7 and 8 are performed using · 
Method 2. The total number of iterations (function evaluations) to reach 
the solution with the accuracy of 10-6 is 11 (0.49s on Cyber 170/815). If 
Method 2 is not used 25 iterations (1.14s of CPU time) are required to 
reach the solution. 
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·at their optimal value fq, which is the quarter wavelength at the center frequency. 

According to Madsen and Schjaer-Jacobsen (1976), this is a singular problem. Above 

the dotted line, Fis equal to one of the functions fj, F(x) = f1 (x), and below the dotted 

line, F is equal to another function, F(x) = f2(x). At the dotted line, 

f1 (x) = f2(x) = F(x) and this line represents the bottom of a valley. 

Iff1 and f2 are different, then there is a kink at the bottom of the valley and 

a method based on linearization, such as Method 1, will provide fast convergence to 

this kink, as illustrated by the first three iterands in Fig. 3.2. After the dotted line 

has been reached, however, the convergence towards z can be slow because the 

iterands have to follow a curve which passes the solution z in a smooth manner (with 

no kink). Therefore, a method based on first-order derivatives only is not sufficient, in 

general, to give fast convergence. Some second-order (or approximate second-order) 

information is needed. The first six iterations are performed using Method 1 of the 

algorithm. Iterations 7 and 8 are performed using Method 2. The total number of 

iterations (function evaluations) to reach the solution with the accuracy of lQ-6 is 11 

(0.49 seconds on the Cyber 170/815). If Method 2 is not used at all, 25 iterations (1.14 

seconds of CPU time) are required to reach the solution. 

Notice that if three functions were equal at a minimum of a two

dimensional problem, then no smooth curve through the solution exists and Method 1 

provides fast (quadratic) convergence to the solution. This is illustrated in Fig. 3.3, 

which shows contours for the same two-section 10:1 transmission-line transformer 

problem. However, the optimization variables are now f1/fq and Z1. Characteristic 

impedance Z2 and section length f2/fq are kept at their optimal values (f2/fq = 1, 

Z2 = 4.47213). Here, the problem is regular and five iterations are sufficient to reach 

the vicinity of the solution. In the figure, the first five iterations shown are performed 



3.0 

2.5 

N 

1.5 

1.0 1 
0.8 

Fig. 3.3 

.6~ 

.70 

0.9 

36 

1.0 

,f,! lq 
I. I 1.2 

Two-dimensional regular minimax problem arising from optimization of 
a two-section 10: 1 transmission-line transformer with optimization 
parameters f1lfq and Z1. The first 5 iterations shown are performed 
using Method 1. The total number of iterations to reach the solution 
with the accuracy of 10- 6 is 8 (0.37s of CPU time on Cyber 170/815). 
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using Method 1. The total number of iterations to reach the solution with the 

accuracy of 10-6 is 8 (0.37 seconds of CPU time on the Cyber 170/815). 

To show the influence of the parameters DX (initial step length of the 

iterative algorithm) and KEQS (the number of successive iterations with identical 

sets of active residual functions that is required before a switch to Stage 2 is made), 

the optimization has been performed several times for different values of DX and 

KEQS. The resulting numbers of residual function evaluations required to achieve 

the accuracy EPS = 10-6, as well as the number of shifts to Stage 2, are summarized 

in Table 3.1 (the numbers of shifts are given in parentheses). 

It can be observed that the increasing values of KEQS correspond to 

slightly increased numbers offunction evaluations. Moreover, too small and too large 

values of DX require more residual function evaluations because of adjustments 

which are performed by the algorithm. From other experiments, it was observed tha t 

the increasing values of KEQS correspond, generally, to smaller numbers of shifts to 

Stage 2 (some too early shifts are eliminated). 

3.5 COMPARISON OF MINIMAX ALGORITHMS FOR CIRCUIT DESIGN 

3.5.1 The Test Problem 

To compare the performance of minimax algorithms, a three-section, 100-

percent relative bandwidth 10:1 transmission-line transformer problem has been 

chosen (see Fig. 3.4). It is a special case of an N-section transmission- line 

transformer. Originally studied by Bandier and Macdonald (1969a, 1969b), this type 

oftest problem is now widely considered. 
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TABLE 3.1 

THE INFLUENCE OF THE CONTROLLING PARAMETERS DX AND 

KEQS ON THE NUMBER OF FUNCTION EVALUATIONS 

DX 

0.1 

0.25 

0.5 

0.75 

1.0 

2 

21(2) 

19(2) 

18(2) 

18(2) 

21(2) 

KEQS 

3 

23(2) 

18(2) 

20(2) 

18(2) 

22(2) 

4 

24(2) 

19(2) 

22(2) 

20(2) 

23(2) 
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1 

Fig. 3.4 Three-section, 10:1 transmission-line transformer used as a test problem to 

compare the performance of minimax algorithms . 

10 
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The problem is to minimize the maximum reflection coefficient of this 

matching network. A detailed discussion on the formulation of direct minimax 

response objectives is presented in Bandler (1969) . 

where 

Formally, the problem is to 

minimize F(x) 
x 

max I p(x, w) I , 
[0.5 , 1.5] 

(3.11) 

The minimax functions represent the modulus of the reflection coefficient 

sampled at the 11 normalized frequencies w (w.r.t. 1 GHz) {0 .5, 0.6, 0.7, 0.77, 0.9, 1.0, 

1.1, 1.23, 1.3, 1.4, 1.5}. The known quarter-wave so lution is given by €1 = €2 = €3 = 

€q, Z1 = 1.63471, Z2 = 3.16228, Z3 = 6.11729, where eq is the quarter wavelength at 

the center frequency, namely, 

€q = 7.49484 cm for 1 GHz. 

The corresponding maximum reflection coefficient is 0.19729. Two starting 

points have been used 

1 T x
0 
= [0.8 1.5 1.2 3.0 0.8 6.0] , 

2 T x
0 

= [1.0 1.0 1.0 3.16228 1.0 10 .0] . 

Gradient vectors with respect to section lengths and characteristic impedances are 

obtained using the adjoint network method. 

3.5.2 Performance of the Algorithms 

Table 3.2 shows the performance of selected minimax algorithms on the 

test problem. Table 3.2 also shows results obtained using the algorithm published in 

Bandier, Kellermann and Madsen (1985b), with a cubic interpolation search for 

maxima of the response . Using this technique, the number of sample points can be 
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TABLE 3.2 

COMPARISON OF ALGORITHMS FOR THE THREE-SECTION TRANSFORMER 

(NUMBER OF FUNCTION EVALUATIONS) 

Algorithm Starting Point x0 
1 Starting Point x 0 

2 

Baudler, Kellermann 
and Madsen (1985b)l 18 * 21 ** 

Hald and Madsen (1981) 21 46 

Agnew (1981) Alg. I 23 64 
Alg. II 20 109 

Baudler and Charalambous (1973) 95 155 

Charalambous and Conn (1975) 162 67 

Conn (1979) 67 80 

Madsen (1975) 253 707 

Madsen and Schjaer-Jacobsen (1976) 29 48 

Baudler, Kellermann 
and Madsen (1985b)2 15 + 22++ 

Execution times on Cyber 170/815 in seconds are * 0.6, ** 0.7, + 0.57, + + 0.85 

"Active" frequency points selected by 
the cubic interpolation search 
0.50000, 0 76999, 1.23001, 1.50000 

1 without cubic interpolation 

2 with cubic interpolation 
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reduced from 11 to 4 and we do not have to know in advance the location of frequency 

points corresponding to the maxima of the response. More information on the cubic 

interpolation search technique is given in Section 3.6 in the context of a new approach 

to worst-case design of circuits. 

The results published by Hald and Madsen (1981) correspond to the 

combined method as described here except that the PSB (Powell's symmetric Broyden) 

formula was used for updating the ,Jacobian in Method 2. Numerical results 

published in Bandler, Kellermann and Madsen (1985b) indicate that the use of the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula as described in Appendix A is 

significantly better (see Table 3.2) . 

3.6 WORST-CASE NETWORK DESIGN 

3.6.1 Preliminary Remarks 

In this section we will formulate the fixed tolerance problem (FTP) 

(Bandier, Liu and Tromp 1976a, Schjaer-Jacobsen and Madsen 1979) embodying 

worst-case search and the selection of sample points for the discrete approximation of 

a continuous problem. As mentioned in the introduction, the disc'retization of a 

continuous problem may result in a large number of minimax functions to be 

minimized. ';rhe size of the problem increases dramatically if we want to consider 

tolerances on network parameters since for each frequency point selected to represent 

the response 2n (n is the number of network parameters) minimax functions have to 

be created if we want to consider all vertices of the tolerance region. 

A number of methods have been proposed for solving the worst-case 

problem. Schjaer-Jacobsen and Madsen (1979) suggest the application of interval 
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-arithmetic. Bandler, Liu and Chen (1975) and Tromp (1977) described methods which 

rely on the assumption that the functions considered are one-dimensionally convex. 

Our approach to the fixed tolerance problem is a double iterative algorithm. 

For each outer iteration of minimization first a search using cubic interpolation is 

done to determine frequency points which are candidates for active functions and then 

a number (equal to the number of selected minimax functions) of inner loop optimiza

tions are performed to determine the worst case for each of the minimax functions. 

The advantage of our approach is that the worst-case search (done by 

means of linearly constrained optimization) and the actual minimization are linked 

together such that each worst-case calculation affects immediately the outer iteration 

of minimization. 

3.6.2 Cubic Interpolation Search Technique 

The cubic interpolation technique allows us to consider the minimum 

number of frequency points to adequately approximate the continuous problem. In 

many cases the discretization of a continuous problem may not be adequate to give the 

continuous minimax solution. As illustrated in Fig. 3.5, the solution obtained using 

uniformly spaced sample points may not be optimal in the continuous minimax sense 

since some of the peaks of the response (or error function) would be missed. One way 

to overcome this difficulty is to use densely spaced sample points. This, however, may 

result in a prohibitively large number of minimax functions to be optimized. 

Therefore, it is desirable to develop a technique to locate the maxima of the response 

w.r.t. frequency and to track these maxima during the optimization process as they 

shift along the frequency axis due to the changes in the values of optimization 
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parameters. Such a technique has been developed by Bandler and Chen (1984). It is 

based on the cubic interpolation formulas of Fletcher and Powell (1963). For 

convenient reference the formulas are given in Appendix B. 

3.6.3 Fixed Tolerance Problem Embodying Worst-Case Search and Selection of 

Sample Points 

We consider a set of m nonlinear functions 

fj(<J>O) ~ f(<j>O, Wj), j E J ~ {1,2, .. ,m}, (3.12) 

where Wj, j E J, is an independent parameter (frequency). The number of functions m 

is equal to 

m = mmax + 2' 

where mmax is the number of the maxima of the response and 2 represents the edges of 

the frequency interval [we, wul. 

The fixed tolerance problem can be defined on the basis of the worst-case 

objective function (Schjaer-J acobsen and Madsen 1979) as that of determining 

min F(<j>°) 

<l> 0 

min max max f (<)>) . 
J 

<l>o jEJ <pER 
E 

(3.13) 

For each outer iteration of minimization w.r.t. <J>O m frequency points are 

determined (by a search technique based on cubic interpolation) and m linearly 

constrained optimizations are performed to find the worst cases. 

At the kth outer iteration of minimization we have an approximation <J>kO of 

the solution and we solve m linearly constrained optimizations, where the jth 

problem, j E J, is 

minimize 
(3.14a) 

subject to 
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(cp°)k - e. ~ (cp. )k ~ (cp°)k + e. ' 
l 1 l 1 1 

i=l,2, ... ,n. 
(3.14b) 

Once <l>k * for the jth function is determined we can identify whether the worst-case 

occurred at a vertex using the following criteria. 

Let 

Cyi\ = I C<t>~k - C<t>~\1- (3.15) 

If J(yi)k - d ~ 10-5, then the worst-case occurred at a vertex, for which µi, i EI, are easy 

to determine 

µ. = 
1 { 

- 1 

+1 

(3.16) 

otherwise 

The function values fj,j E J, and the gradients offj,j E J, which are returned 

to the outer iteration are evaluated at a point (<l>/)k, i.e., where the jth worst-case 

occurred. 

3.6.4 Illustration of the Approach: Three-Section Transmission-Line 

Transformer 

The three-section transmission-line transformer is used to illustrate the 

approach and its validity for worst-case design. Numerical results are summarized in 

Table 3.3. As expected the nominal parameter values are different from the values 

obtained for the nominal design problem. The location of the two internal maxima of 

the response has also changed as compared to the nominal design problem. Each 

linearly constrained optimization to determine worst-case for the particular 

frequency with the accuracy 10-3 requires about 4 iterations of the algorithm. 
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TABLE 3.3 

FIXED TOLERANCE PROBLEM FOR THE 

THREE-SECTION 10:1 TRANSFORMER 

Number of Minimax Functions 

Number of Variables 

Required Accuracy of the Solution 

Assumed Tolerances 

Step Size in the Cubic Interpolation Search 

Solution Vector 

"Active" Frequency Points 

Maximum Reflection Coefficient 

Number of Function Evaluations 

Execution Time on Cyber 170/815 (in seconds) 

4 

6 

10-5 

5% 

0.1 

f1ffq = 0.96373 

Z1 = 1.67797 

€2/fq = 0.98720 

Z2 = 3.22493 

€3/fq = 0.96483 

Z3 = 6.04817 

0.50000 

0.78726 

1.27242 

1.50000 

0.33589 

32 

8.1 
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3.7 CONCLUDING REMARKS 

In this chapter, we have considered minimax optimization techniques in 

computer-aided design of engineering systems. The area of nonlinear minimax 

optimization has been briefly reviewed. Comparison made on the classical three

section transmission-line transformer problem shows clearly that the algorithm of 

Hald and Madsen is better than the other algorithms in terms of the number of 

function evaluations required to reach the solution with a desired accuracy. 

We have presented a novel approach to worst-case tolerance design of 

circuits integrating a cubic interpolation based search technique for maxima of the 

response with the worst-case search using linearly constrained optimization. The 

validity of the approach has been demonstrated by solving a fixed tolerance problem 

for the three-section transmission-line transformer. We emphasize that our approach 

does not require the designer to know in advance the location of frequency points 

corresponding to the maxima of the response and significantly reduces the number of 

sample points adequately approximating the continuous response. This aspect of the 

approach is particularly important since it can reduce the number of minimax 

functions for which the worst cases have to be found. 



4 
e1 OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED ENGINEERING 

4.1 INTRODUCTION 

The problem of minimizing the f1 norm of a set of nonlinear functions 

arises m a variety of areas. The most popular application of the e 1 norm is the 

problem of approximating a function to data that might be contaminated with some 

wild points or gross errors. In this case the minimization of the f1 norm residual is 

superior to using other norms fp with p > l (Bartels and Conn 1981). 

The number of applications of thee 1 norm to circuit and system problems is 

increasing. The e 1 norm has been successfully used to isolate the most likely faulty 

elements in fault isolation techniques for linear analog circuits (Bandier, Biernacki, 

Salama and Starzyk 1982). 

Another important application of thee 1 norm is the functional approach to 

post-production tuning (Bandier and Salama 1985), where the f1 type of objective 

function is used to se lect the number of tunable parameters needed to tune all possible 

outcomes of a manufactured design. 

As the number of applications of the f1 norm to circuit and system problems 

is increasing so is the importance of fast and efficient nonlinear e 1 optimization 

algorithms to circuit designers and engineers. We present a brief review of the 

existing f1 algorithms and concentrate in more detail on the Hald and Madsen 

algorithm. 

The problem of tunable parameter selection in optimal DCTT is considered 

with the emphasis on the tuning problem at the design stage. The necessary 

51 
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conditions for optimality of the nonlinear ft problem with nonlinear constraints are 

derived and discussed in connection with the tuning problem. 

We define regular and singular ft problems and formulate a criterion for 

determining a singularity present in the ft problem. 

The properties of the Hald and Madsen ft optimization algorithm are 

applied to fault isolation in linear analog circuits under an insufficient number of 

independent voltage measurements. A new formulation of the problem, a formulation 

based on an exact penalty function, is proposed and illustrated by a simple resistive 

network example. 

In this chapter we also present a formulation using the ft norm for model 

parameter identification problems and illustrate it with a 6th order multi-coupled 

cavity narrow band-pass filter. 

4.2 REVIEW OF ft ALGORITHMS 

4.2.1 Formulation of the Problem 

The optimization problem to be considered has the following mathematical 

formulation. Let 

f.(x)~f.(xt,x 2, ... ,x ), j = 1 ,2, ... ,m, 
J J n 

be a set of m nonlinear, continuously differentiable functions. The vector x ~ [x1 x2 ... 

xnJT is the set of n parameters to be optimized. We consider the following problem: 

subject to 

m 

minimize F(x) ~ L lf(x)I 
J 

x j =t 

T 
a. x + b. = 0, 

l I 

aT x + b. 2': 0, 
1 l 

i=l,2 , .. . ,f , 
eq 

i = f +l, .. . ,f, 
eq 

(4. la) 

(4.lb) 

(4.lc) 

where ai and bi,i = 1, 2, ... , f, are constants. This is called the linearly constrained f1 

problem. 
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4.2.2 Algorithms for the Nonlinear e1 Problem 

The problem (4.1) is, in principle, very similar to the linearly constrained 

minimax problem where the objective function is F(x) g maxlfj(x)I. Therefore, many of 

the algorithms for solving the minimax problem may be revised into algorithms for 

solving (4.1) and vice versa. For this reason most of the methods mentioned below 

have minimax counterparts. A survey of minimax algorithms has recently been given 

in Bandier, Kellermann and Madsen (1985b). 

Most of the methods for minimizing the e1 function solve only the 

unconstrained problem (i .e. (4.1) withe = 0). For the type of methods to be described 

in this chapter, however, it is no complication and computationally costless to add the 

linear constraints. 

One of the first attempts to solve thee 1 problem was published in the paper of 

Osborne and Watson (1971). The method is iterative and at the kth iterate Xk the 

following linear approximation of the nonlinear e 1 problem is used: 

minimize 
h 

(4.2) 

This linear model problem is solved using linear programming. The direction hk 

found is then used in a line search. This method has quadratic final convergence 

under special circumstances but normally the final convergence is much slower . The 

global convergence properties of this method are rather poor, and like the Gauss-

Newton method for nonlinear least squares (which is similar) the Osborne and 

Watson method may provide fast convergence to a nonstationary point, e.g., a point 

which is not a local minimum. 

The more recent papers on the e1 problem use some second-order information. 

Most of the methods require that the user supply exact second (as well as first) 
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derivatives. To the best of our knowledge the method of Hald and Madsen (1985) is 

the first which uses approximate second-order information (i.e., it is a second-order 

method, but the user supplies only first derivatives). The methods of the next 

paragraph use exact second-order information. 

El-Attar, Vidyasagar and Dutta (1979) use a sequence of smooth problems 

approximating the (nondifferentiable) €1 problem. Each of the smooth problems is 

solved by standard techniques and the sequence of solutions will often converge to a 

solution of the €1 problem. However, this kind of method may have severe ill

conditioning problems near an e 1 solution because a nondifferentiable function with a 

kink is approximated by smooth functions. This gives curvatures in the smooth 

functions which tend to infinity as the €1 solution is approached. Murray and Overton 

(1981) use a nonlinear programming formulation of the €1 problem and apply 

successive quadratic programming. A special line search algorithm is used to obtain a 

reduction in the €1 objective function. The algorithm of McLean and Watson (1980) is 

a hybrid method like the method of Hald and Madsen (1985). It combines a first-order 

method based on (4.2) using trust regions with a Newton iteration. The first-order 

method is intended to be used initially, and close to a solution the Newton method 

should be used. This method often converges rapidly to a solution but the rules for 

switching between the two stages do not guarantee convergence. In fact the method 

may converge to a nonstationary point. 

The linearly constrained €1 problem may be formulated as a nonlinear 

programming problem. Then it can be solved by standard techniques from that field. 

When Powell's (Powell 1978) method for nonlinear programming is applied to the €1 

problem we obtain a method which in its final stages is very similar to the Hald and 

Madsen method. It can be shown that in the neighbourhood of a local solution of (4.1) 

their method generates the same points as Powell's method. However, in the latter 

method a quadratic program must be solved in every iteration, whereas Hald and 
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Madsen have to solve only a set of linear equations in the neighbourhood ofa solution. 

Therefore, the computational effort used per iteration with their method is normally 

much smaller. 

4.3 THE HALD AND MADSEN ALGORITHM FOR NONLINEAR f1 

OPTIMIZATION 

The algorithm to be described in this section is based on the work of Hald and 

Madsen (1985). It is a hybrid method combining a first-order method with an 

approximate second-order method. The first-order method is a robust trust region 

method which provides convergence to the neighbourhood of a solution. It is based on 

linear model problems of the type (4.2). These are solved subject to the constraints of 

the original problem (4.1) and a bound on the step length llhll. The latter bound 

reflects the neighbourhood of the iterate Xk in which the kth model function (see (4.2)) 

is a good approximation to the nonlinear f1 function. If the solution approached by 

the first-order method is "singular" (see below) then a higher-order method must be 

used in order to obtain a fast ultimate rate of convergence. Therefore a switch is made 

to a quasi-Newton method that solves a set of nonlinear equations that necessarily 

hold at a so lution of (4.1). This method has superlinear final convergence. Several 

switches between the first-order and the quasi-Newton method may take place. The 

reason for allowing this is that the latter method works only close to a solution, so if it 

is started too early a switch back to the (more robust) trust region method is 

necessary. Notice that the user of this algorithm is required to supply function values 

and first-order derivatives, whereas the necessary second derivative information is 

generated by the algorithm. 

The algorithm is described in more detail in Appendix C, where the two 

methods, namely, the first-order method (denoted Method 1) and the approximate 
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second-order method (denoted Method 2) are presented and the switching condi tions 

between the two methods are given. 

4.4 NECESSARY CONDITIONS FOR OPTIMALITY OF THE NONLINEAR f1 

PROBLEM WITH NONLINEAR CONSTRAINTS 

As indicated in the introduction the e 1 objective function plays an important 

role in many circuit and systems problems. Since many of these problems are 

formulated as f 1 optimization problems with nonlinear constraints, it may be useful 

to derive necessary conditions for optimality and use them to get some insight into the 

features of thee 1 norm in engineering problems. 

In the following derivation we use the approach taken by El-Attar, 

Vidyasagar and Dutta (1979) and extend it to the case of nonlinear constraints. 

The nonlinear f 1 problem with nonlinear constraints may be stated as 

m 

minimize F(x) != L lf}x)I . 
(4.3a) 

x j = t 

subject to 

g. (x) 2: 0, i = 1, . .. , m , 
1 C 

(4.3b) 

where gi: Rn - Rare, in general, nonlinear constraints. 

Problem (4.3) can be transformed into the following nonlinear programming 

problem 

m 

minimize F(x, y) £ L yi. 
(4.4a) 

x,y i=l 

subject to 

y. - f. (x) 2: 0 , i = 1, 2, ... , m , 
l 1 

(4.4b) 

y. + f. (x) 2: 0 , i = 1, 2, ... , m , 
l l 

(4.4c) 

(4.4d) 
g (x) 2: 0 , i = 1, ... , m , 

1 C 

where the fi(x), gi(x) are as in (4.3) and F: Rn+m _Risa new objective. 
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The gradient of the objective function is 

F' = [ ~ j, (4.5) 

where u = [1 1 ... l]T is an m-dimensional vector representing the gradient w.r.t. y 

and O = [O O ... O]T is an n-dimensional vector representing the gradient w.r. t. x. 

Suppose that (x*, y*) is a solution to (4.4), then 

/ = If (x*)I , i = 1, 2, ... , m . 
1 1 

Define the sets 

I(x*)~{ilf.(x*) > O}, 
1 

J(x*)~ {i I f.(x* ) < O}, 
l 

Z(x*)~{ilf.(x*) = O}, 
1 

A(x*)~{ilg (x*) = O}. 
l 

The gradients of the active constraints for the problem (4.4) are given by 

[ 
e i j i E I(x*) , 

-r'.(x*) ' 
1 

[ 
ei l i E J(x*), 

£'. (x*) ' 
1 

i E Z(x*), 

i E A(x*), 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4. 13) 

(4.14) 

where ei is an m-dimensional vector with 1 in the ith position and zeros elsewhere. 

By applying the Kuhn-Tucker conditions we get the following necessary 

conditions for optimality 
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l 
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- e. 
l 

- f (x*) 
1 

0 
' 

]+ 

l = [ ~ ] , - g.(x*) 
l 

where ,\ ~ 0 and Yi ~ 0 are the corresponding multipliers. 

or 

where 

Splitting equation ( 4.15) we get 

' "A . f '. (x*) + ' "A . ( - f (x*)) + ' ("A.. - y )f'.(x*) + L 11 L 1 1 L 1 1 1 

iEl iEJ iEZ 

+ ' A. . (- g (x*)) = 0, L 1 1 

iEA 

A.. =1 , iEI, 
l 

"A..=l, iEJ, 
l 

"A. + y. = 1 } l l 

, i E Z, 
y.~O,A.~O 

l l 

"A..~O, iEA, 
l 

L oi ((x*) + L 1\ fi(x*) = L \ g/x*), 
iflZ iEZ iEA 

- 1 ::; 8. ::; 1, i E Z, 
l 

"A..~O, iEA, 
l 

o. :@: sign f. (x*) . 
l l 

( 4.15) 

(4.16) 

(4.17) 

(4.18) 

The necessary conditions for optimality of the nonlinear e1 problem indicate 

that zero functions fi(x*), i E Z, play an important role in the characteristics of the e1 

problem. They are called active e1 functions since they characterize an e1 solution in 

a similar way as the active functions in the nonlinear minimax problem. At an e1 

solution all the functions are naturally divided into two sets , one containing zero 

functions and the other nonzero functions. This fact may be very useful in many 
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engineering problems which require some kind of a discrete selection or classification 

process if only we can formulate the problem in such a way that zero (or nonzero) 

functions at an f1 solution have a unique interpretation in terms of a practical 

engineering problem. 

Once again an analogy can be drawn to the mm1max problem in which 

minimax functions (error functions) result from lower and/or upper specifications on a 

performance function of interest and the sign of the minimax objective indicates 

whether the specifications are satisfied or violated. 

4.5 REGULAR AND SINGULAR e1 PROBLEMS 

Madsen and Schjaer-Jacobsen (1976) presented a theoretical treatment of 

singularities in nonlinear minimax optimization problems, which allows for a 

classification of regular and singular problems. Similar concepts apply to nonlinear 

f1 problems (Bandier, Kellermann and Madsen 1985c). 

In order to simplify the notation assume that the first r functions are active in 

the nonlinear e1 problem, i.e., Z = {1, 2, ... , r} (see (4.9) for the definition ofZ). 

Definition 1 

The unconstrained f1 problem is singular with respect to the solution x* if the 

matrix 

6 ' ' ' 
Da := [f/x*) f}x*) ... f/x*)] 

(4.19) 

has rank less than n. Otherwise the problem is regular. 

When constraints are present, active constraints play the same role as 

functions whose values are zero at the solution. 

Assume that the first ma constraints are active in the nonlinear e 1 problem, 

i.e., A = {1, 2, ... , ma} (see (4.10) for the definition of A). 
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Definition 2 

The constrained f1 problem is singular with respect to the solution x* if the 

matrix 

D£ [f/x*) f~(x* ) ... ((x*) g/x*) g~(x*) .. . g~ (x*)] 
(4.20) 

a 

has rank less than n . Otherwise the problem is singular. 

Normally a problem is regular if the (total) number of zero functions and 

active constraints is at least n . 

Consider a two-dimensional example with two functions and no constraints 

(4.21) 

2 f
2
(x) = x

1 
- x

2
. 

Contours of F near the solution are given in Fig. 4.1. The solution is at x* = [0 .59 

0.35]T,wheref1(x*) = 0.28927 > Oandf2(x*) = 0. Thisisanexampleofasingularf1 

problem since the number of functions whose values are zero at the solution is less 

than n (the number of variables). 

4.6 TUNABLE PARAMETER SELECTION IN THE OPTIMAL DCTT PROBLEM 

4.6.1 Approaches to the Tuning Problem 

Computer-aided designers have approached the tuning problem in two ways, 

each emphasizing one distinct facet. Before production, at the design stage, one can 

consider tuning as an integral part of the design process (Bandler, Liu and Tromp 

(1976a), Polak and Sangiovanni-Vincentelli (1979)), the objective being to relax the 

tolerances on the circuit components and compensate for the uncertainties in the 

model parameters. It is often necessary to introduce tuning parameters in order to 

obtain a feasible design. Sometimes, this is the case when tolerances are fixed and 

there is no solution to the FTP satisfying all design specifications. The integral 
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Fig. 4.1 Contours for a singular two-dimensional e 1 problem (4.21). 
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design problem is formulated and solved using optimization such that the essential 

demand of production cost reduction is optimally met. The solution of the design 

problem provides the manufacturer with the allowed design tolerances and the 

tunable parameters. At the design stage we can distinguish two types of tuning 

problems: 

a) tuning with a fixed set of tunable parameters, 

b) tuning with a variable set of tunable parameters. 

Problem a) is basically a centering problem (if the tolerances are fixed) and the 

solution gives us tuning ranges for the tunable parameters . Problem b) involves the 

selection of tunable parameters at the design stage. Introducing tunable parameters 

is usually expensive and we want to find the necessary tunable parameters (and their 

ranges) with the objective of minimizing the cost of introducing tunable parameters. 

Ideally, we would like to find the minimum number of tunable parameters which are 

necessary to satisfy the specifications. 

In the final stages of production, the manufactured circuit is usually tested to 

check whether or not it meets the design specifications. Tolerances on circuit com

ponents, parasitic effects and uncertainties in the circuit model cause deviations in 

the manufactured circuit performance, and violation of the design specifications may 

result (Bandler and Salama 1981) . Post-production tuning is usually needed and the 

tuning assignment problem arises. Here, it is required to find the necessary changes 

in the tunable parameters to adjust the manufactured circuit to satisfy the design 

requirements. The post-production tuning problem has been a problem of significant 

interest amongst computer-aided designers which resulted in a number of algorithms 

(Adams and Manaktala 1975, Li.i.der and Kaiser 1976, Lopresti 1977, Alajajian, Trick 

and El-Masry 1980, Bandler and Biernacki 1980, Schockley and Morris 1983). Most 

of these algorithms utilize network sensitivities and first-order approximations. 
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On the contrary, tuning at the design stage has not been given its proper place 

in computer-aided design. In this chapter, therefore, we examine some aspects of the 

tuning problem at the design stage. 

4.6.2 Tuning at the Design Stage with a Fixed Set of Tunable Parameters 

Taking the tuning process into account at the design stage we separate the 

design components into tunable elements and nontunable elements (Bandier and 

Biernacki 1980). 

Let 

(4.22) 

define the tunable design elements and 

<t> ~ 
r 

(4.23) 

define the nontunable elements. 

Once the tunable components have been chosen the problem is to find the 

nominal point <t>O, tuning ranges of the tunable parameters ti, i E It, and settings of 

the tunable parameters Pir, i E It, r E Iv, for all worst-cases, such that any worst-case 

can be tuned into the feasible region of the problem. 

The problem is basically a centering problem and can be formulated in 

minimax form as 
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F(q,) ~ max (- g (q, )) 
(4.24a) 

minimize 
1 

<Po, t , pr i E I 
c 

subject to 

<Po;::: o (4.24b) 

t. ;::: 0 , iE rt i{l,2, .. ,k} 
(4.24c) 

l 

-1:s;pr:s;l, i E It, r E I 
(4.24d) 

l v ' 

where 

O r r iEl , rEI 
(4.25) 

¢. = ¢ + e. µ . + t . p . , 
1 l l l l l t v 

or 

¢ 0 r i f It . 
(4.26) 

. = ¢ . + e. µ. ' 
l l l l 

4.6.3 Tuning at the Design Stage with a Variable Set of Tunable Parameters 

In this type of problem ;,r the selection of tunable parameters at the design 

stage is involved. We would like to determine the minimum number of tunable 

parameters (and their ranges) such that all outcomes can be adjusted to meet the 

design specifications. 

4.6.3.1 Mixed Programming Formulation 

The following mixed programming formulation of the tuning problem ensures 

that the solution gives the minimum number of tunable parameters 

m 

m1n1mize ) W . S. 
(4.27a) 

......, 1 l 

t .,pr , s i=l 
l 1 l 

subject to 

g (q,) ;::: 0, i E I , 
1 C 

(4.27b) 

- 1::; pr::; 1, iE I, rE I , 
1 ~ V 

(4.27c) 
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(4.27d) 

s. = 0 or s. = 1, i E I , 
l l ¢ 

(4.27e) 

where 

O r r 
<j:> = <j:>. + 8. µ. + t. p. S .. 

l l l l 1 l l 

(4.28) 

4.6.3.2 f1 Objective Function in the Tuning Problem 

In many cases, however, we are satisfied with a solution where a possibly 

small subset of all parameters is selected for tuning (without guarantee that it is the 

smallest) and in that case we formulate the problem in the way for which there exist 

efficient algorithms. The necessary conditions for optimality of the nonlinear f1 

problem (Charalambous 1979, Bandler and Kellermann 1983) indicate that zeros of 

the nonlinear functions fj(x) play an important role in the characteristics of an f1 

solution. This fact can be used in the tunable parameter selection problem at the 

design stage. 

To select a small subset of tunable parameters at the design stage the 

following objective function can be used 

n 

C = "'" le. t.l, L 11 

(4.29) 

i= 1 

where the c/s are positive weighting factors. 

The corresponding optimization problem can be formulated as 

n 

minimize "'" le. t. I L 11 

(4.30a) 

O r 
<Pi' ti, pi 

i= 1 

subject to 

g(<p) 2: 0, i = 1, 2, ... , m , 
l c 

(4.30b) 
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- l s:; pr s:; l, 1 = 1, 2, ... , n, 
I 

O r r 
¢. = ¢. + 8. µ. + t. p .. 

l l l l l l 

(4.30c) 

(4.31) 

The e 1 objective function plays an important role in the tuning problem. 

Many of these problems are formulated as €1 optimization problems with nonlinear 

constraints. From the necessary conditions for optimality of the €1 problem with 

nonlinear constraints (derived in Section 4.4) it can be seen that the active constraints 

(more precisely, the gradients of the active constraints) in the €1 problem have some 

influence on the number of functions fj(x) that are zero at a solution x* . In the tuning 

problem those zeros correspond to parameters that are not tunable . To illustrate the 

fact we show a simple two-dimensional example in which the constraints defining the 

feasible region Re are linear. 

4.6.4 Two-dimensional Example of the Properties of the €1 Objective Function in 

the Tuning Problem 

Assuming no overlapping of nonfeasible regions defined by different 

constraints inside the orthotope Re, i.e ., 

R. n R.=0 
l J 

(4.32) 

i :;z: j 

i,j E IC 

where 

(4.33) 

we consider the objective function of the form~ ltd. 

A two-dimensional example of Re and Re, assuming that the constraints 

defining Re are linear, is shown in Fig. 4.2 . The constraints gj(<l>),j = 1,2,3,4, are of 



AB=lt1 p~ I 

BC=lt2P11 
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94(cp)=O 

Fig. 4.2 Two-dimensional example ofR8 and Re. 
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the form 

where 

O r r 
q:>. = <P + 8. µ. + t. p .. 

l l l l l l 

Using simple geometrical relations (see Fig. 4.2), we have 

Similarly for other vertices 

lt 1 p~I _ laj2I 

lt2P;I la) 

or 

for (r,j) = {(2,2) (1,3) (3,4)} . 

(4.34) 

(4.35) 

(4.36) 

Vector t is a vector of tuning ranges for both parameters. Tuning in the 

negative direction is allowed with IP/I ::;; 1. 

The objective function 

2 

I ltJ, 
(4.37) 

i= 1 

which minimizes the sum of tuning ranges, will select only one parameter for tuning, 

namely, 

or 

t if 
1 

t if 
2 

max 

max la) < 

Introducing new variables 

max la), j = 1,2,3,4, 

max laj21, j = 1,2,3,4. 

we can state that the objective (4.37) will select 

r r 

(4.38) 

(4.39) 

( 4.40) 

(4.41) 
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or 

(4.42) 

r r 

In general, the objective function 

n 
(4.43) 

minimizes the sum of tuning ranges and is appropriate to minimize the cost of tuning 

associated with each element. 

4.7 FAULT ISOLATION IN ANALOG CIRCUITS USING THE €1 NORM 

4.7 .1 Formulation of the Problem 

This application of the €1 norm to circuit problems deals with fault isolation 

m linear analog circuits under an insufficient number of independent voltage 

measurements. The €1 norm is used to isolate the most likely faulty elements. 

Practically, the faulty components are very few and the relative change in their 

values is significantly larger than in the nonfaulty ones (Merrill 1973) . 

The method presented here is a modification of the method utilizing 

multiple test vectors to obtain the measurements (Bandler, Biernacki, Sala ma and 

Starzyk 1982). 

For k different excitations applied to the faulty network we consider the 

following optimization problem 

n 

minimize 
(4.44a) 

i= 1 

subject to 
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~ - V~=O, 

(4.44b) 

~ - v; = o, 
where <I>~ [¢1 ¢2 ... <t>nJT is a vector of network parameters, 4>0 represents the nominal 

parameter values, t:.q,. ~ ¢· - q, .D, i = 1, 2, ... , n, represent the deviations in network 
l l l 

parameters from nominal values, V km is a p-dimensional vector of voltage 

measurements performed at the accessible nodes for the kth excitation and V kc is a p-

dimensional vector of voltages at accessible nodes calculated using the vector <I> as 

parameter values. 

The corresponding nonlinear e1 problem can be formulated based on an 

exact penalty function (Charalambous 1979) as follows ; 

m1n1m12e 

n + kxp · 

L lf.C<l>)I, 
J 

(4.45) 

<I> j=l 

where 

f. (<I>)~ t:.¢ I¢ O , i = 1, 2, ... , n , 
l 1 l 

(4.46) 

f (<I>)~ B. (Ve - vm), i = 1, 2, ... , kxp, 
n+t 1 1 1 

(4.47) 

and Bi, i = 1, 2, ... , kxp, are appropriate multipliers (satisfying certain conditions 

stated in Charalambous 1979). 

4.7.2 Mesh Network Example (Bandler, Biernacki, Salama and Starzyk 1982) 

Consider the resistive network shown in Fig. 4.3 with the nominal values of 

elements Gi = 1.0 and tolerances E\ = ± 0.05, i = 1, 2, ... , 20. All outside nodes are 
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8 9 
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Fig. 4.3 The resistive mesh network (12 nodes). 
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assumed to be accessible with node 12 taken as the reference node. Nodes 4, 5, 8 and 9 

are assumed internal, where no measurements can be performed. Two faults are 

assumed in the network in elements G2 and G13. In Case 1 we applied the Hald and 

Madsen £1 algorithm to optimization problem (4.45) with a single excitation at node 1. 

In Case 2 we considered two excitations applied at nodes 3 and 6 sequentially. The 

results of both optimization problems are summarized in Table 4.1. The nominal 

component values have been used as a starting point since just a few elements change 

significantly from nominal. 

In both cases the actual faulty elements have been identified, but in Case 2, 

the estimated changes in the faulty elements are closer to their true values . Also 

some of the changes in the nonfaulty components approach better their true values in 

Case 2. The estimated changes in the faulty elements are much closer to the actual 

changes as compared to the results reported in Bandier, Biernacki, Salama and 

Starzyk (1982). 

Consider the resistive network shown in Fig. 4.4 with 28 nodes, the 

nominal values of elements Gi = 1.0 and tolerances £i = ± 0.05, i = 1, 2, .. . , 52. All 

outside nodes are assumed to be accessible for measurements with node 28 taken as 

the reference node. 

Two experiments have been performed using this network and a single 

excitation applied at node 21. First, six faults are assumed in the network in elements 

G37, G33, G39, G49, G51 and G52. The optimization problem (4.45) has been solved and 

the results are shown in Table 4.2. All six faults have been identified successfully. In 

another experiment (see results in Table 4.3) four faults in the network in elements 

G41, G44, G45 and G43 have also been successfully detected with only one excitation. 

The results presented in Tables 4.2 and 4.3 have been obtained using a version of the 
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TABLE 4.1 

RESULTS FOR THE MESH NETWORK EXAMPLE (12 NODES, 2 FAULTS) 

Percentage Deviation 

Element Nominal Actual 
Value Value Actual Case 1 Case 2 

G1 1.0 0.98 - 2.0 0.00 0.13 

G2 1.0 0.50 - 50.0* - 48.78 -49.44 

G3 1.0 1.04 4.0 0.00 3.60 

G4 1.0 0.97 -3.0 0.00 0.00 

Gs 1.0 0.95 - 5.0 - 2.26 -1.71 

06 1.0 0.99 -1.0 0.00 0.00 

G1 1.0 1.02 2.0 0.00 0.00 

Gs 1.0 1.05 5.0 0.00 0.00 

Gg 1.0 1.02 2.0 2.80 0.97 

G10 1.0 0.98 - 2.0 0.00 0.00 

Gu 1.0 1.04 4.0 0.00 0.00 

G12 1.0 1.01 1.0 3.45 2.08 

G13 1.0 0.99 - 1.0 0.00 - 0.44 

G14 1.0 0.98 - 2.0 0.00 0.00 

G1s 1.0 1.02 2.0 0.00 1.55 

G16 1.0 0.96 - 4.0 -2.42 - 5.71 

G11 1.0 1.02 2.0 0.00 2.67 

G1s 1.0 0.50 - 50.0* - 52.16 - 48.94 

G19 1.0 0.98 - 2.0 0.00 - 1.95 

020 1.0 0.96 - 4.0 - 3 67 - 4.88 

Number of Function 8 8 
Evaluations 

Execution Time (secs) 
on Cyber 170/815 3.0 3.9 

* Faults 
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21 G31 22 

Fig. 4.4 The resistive mesh network (28 nodes). 
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TABLE 4.2 

RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 6 FAULTS) 

Percentage Deviation 
Element Nominal Actual 

Va lue Value Actual Computed 

G1 1.00 0.98 - 2.0 0.0 

G2 1.00 0.98 - 2.0 0.0 

G3 1.00 1.04 4.0 0.0 

G4 1.00 1.01 1.0 0.0 

Gs 1.00 0.99 -1.0 0.0 

G6 1.00 0.97 -3.0 0.0 

Gy 1.00 0.95 - 5.0 0.0 

Gs 1.00 1.02 2.0 0.0 

Gg 1.00 1.00 0.0 0.0 

G10 1.00 1.01 1.0 0.0 

G11 1.00 0.95 -5.0 0.0 

G12 1.00 0.99 - 1.0 0.0 

G13 1.00 1.03 3.0 0.0 

G14 1.00 0.97 - 3.0 0.0 

G1s 1.00 0.95 -5 .0 0.0 

G16 l.00 1.02 2.0 0.0 

G11 l.00 1.04 4.0 0.0 

G13 1.00 0.98 - 2.0 0.0 

G19 l.00 0.99 -1.0 0.0 

G20 1.00 1.05 5.0 0.0 

G21 1.00 0.97 - 3.0 0.0 

G22 1.00 1.04 4.0 0.0 

G23 1.00 0.99 - 1.0 0.0 

G24 l.00 0.96 -4.0 0.0 

G2s 1.00 1.05 5.0 0.0 

G26 1.00 0.96 - 4.0 0.0 

G21 1.00 1.04 4.0 0.0 

G2s 1.00 1.00 0.0 0.0 
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TABLE 4.2 (continued) 

RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 6 FAULTS) 

G29 1.00 0.99 - 1.0 0.0 

G30 1.00 0.95 - 5.0 0.0 

G31 1.00 1.03 3.0 0.0 

G32 1.00 0.99 - 1.0 0.0 

G33 1.00 1.00 0.0 0.0 

G34 1.00 0.98 - 2.0 0.0 

G35 1.00 0.96 - 4.0 0.0 

G36 1.00 0.98 - 2.0 0.0 

G37 1.00 0.50 - 50.0* -49.0 

G3s 1.00 0.50 - 50.0* -46.0 

G39 1.00 0.50 - 50.0* - 56.0 

G40 1.00 1.01 1.0 0.0 

G41 1.00 1.03 3.0 0.0 

G42 1.00 0.98 - 2.0 0.0 

G43 1.00 0.97 - 3.0 0.0 

G44 1.00 0.95 - 5.0 0.0 

G45 1.00 0.96 - 4.0 -11.0 

G46 1.00 1.02 2.0 0.0 

G47 1.00 1.04 4.0 0.0 

G4s 1.00 0.99 -1.0 0.0 

G49 1.00 0.50 - 50.0* - 55 .0 

Gso 1.00 1.03 3.0 0.0 

Gs1 1.00 0.50 - 50.0* -40.0 

Gs2 1.00 0.50 - 50.0* -52.0 

Number of 
Function Evaluations 12 

*Faults 
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TABLE 4.3 

RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 4 FAULTS) 

Percentage Deviation 
Element Nominal Actual 

Value Value Actual Computed 

G1 1.00 0.98 - 2.0 0.0 

G2 1.00 0.98 - 2.0 0.0 

G3 1.00 1.04 4.0 0.0 

G4 1.00 1.01 1.0 0.0 

Gs 1.00 0.99 - 1.0 0.0 

Gs 1.00 0.97 - 3.0 0.0 

G1 1.00 0.95 - 5.0 0.0 

Gs 1.00 1.02 2.0 0.0 

Gg 1.00 1.00 0.0 0.0 

G10 1.00 1.01 1.0 0.0 

Gu 1.00 0.95 - 5.0 0.0 

G12 1.00 0.99 - 1.0 0.0 

G13 1.00 1.03 3.0 0.0 

G14 1.00 0.97 - 3.0 0.0 

G15 1.00 0.95 - 5.0 0.0 

Gl6 1.00 1.02 2.0 0.0 

G11 1.00 1.04 4.0 0.0 

G13 1.00 0.98 - 2.0 0.0 

G19 1.00 0.99 - 1.0 0.0 

G20 1.00 1.05 5.0 0.0 

G21 1.00 0.97 - 3.0 0.0 

G22 1.00 1.04 4.0 0.0 

G23 1.00 0.99 - 1.0 0.0 

G24 1.00 0.96 - 4.0 0.0 

G2s 1.00 1.05 5.0 0.0 

G2s 1.00 0.96 - 4.0 0.0 

G21 1.00 1.04 4.0 0.0 
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TABLE 4.3 (continued) 

RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 4 FAULTS) 

G2s 1.00 1.00 0.0 0.0 

G29 1.00 0.99 - 1.0 0.0 

Gso 1.00 0.95 - 5.0 0.0 

G31 1.00 1.03 3.0 0.0 

G32 1.00 0.99 -1.0 0.0 

G33 1.00 1.00 0.0 0.0 

G34 1.00 0.98 -2.0 0.0 

Gss 1.00 0.96 - 4.0 0.0 

Gs6 1.00 0.98 - 2.0 0.0 

G37 1.00 0.99 - 1.0 2.0 

G33 1.00 1.05 5.0 0.0 

G39 1.00 0.97 - 3.0 0.0 

G40 1.00 1.01 1.0 0.0 

G41 1.00 0.50 -50.0* - 46 .0 

G42 1.00 0.98 - 2.0 0.0 

G43 1.00 0.97 - 3.0 0.0 

G44 1.00 0.50 - 50.0* - 54.0 

G45 1.00 0.50 - 50.0* - 45.0 

G46 1.00 1.02 2.0 0.0 

G47 1.00 1.04 4.0 0.0 

G4s 1.00 0.50 - 50.0* -53 .0 

G49 1.00 0.95 - 5.0 0.0 

Gso 1.00 1.03 3.0 0.0 

Gs1 1.00 0.98 - 2.0 - 6.0 

Gs2 1.00 1.03 3.0 0.0 

Number of 
Function Evaluations 7 

*Faults 
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Hald and Madsen €1 algorithm developed on the Texas Instruments Professional 

Computer. Due to the size of the problem the execution times were of the order of 

hours on a TI/PC. 

4.8 MODEL PARAMETER IDENTIFICATION USING THE €1 NORM 

4.8.1 Formulation of the Problem 

This application of the e 1 norm to circuit problems deals with model 

parameter identification from measurements. The problem of approximating a 

measured response by a network or system response can be formulated as an 

optimization problem. 

Let 

Fm(w) ~ [F~ F; ... F:]T (4.48) 

be a measured response corresponding to measurements at data (frequency) points Wi, 

i = 1, 2, ... , k, where 

Fm£ Fm(w.), i = 1, 2, ... , k . 
1 1 

(4.49) 

Let 

V:(q>, w) £_ [F~(q>) F~(<l>) ... F~(<t>)l (4.50) 

be the response of an appropriate model which depends nonlinearly on a vector of 

parameters <t>£ [q>1 <P2 ... <PnJT, where 

where 

The identification problem may be stated as follows : 

minimize llfJI 
<l> 

f.(q>) g F c(q>) - Fm, i = 1, 2, ... , k. 
l l l 

(4.51) 

(4.52) 

(4.53) 

(4.54) 
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It is usually assumed that the expected values of components off are zero, 

but due to the presence of measurement errors in observing Fm, this cannot be 

realized in practice. The particular norm to be used depends on the distribution of 

these errors, represented by the components off. 

It is commonly supposed that the values of the f/s are independent and 

normally distributed, when the maximum likelihood estimate of the data is given by 

choosing the norm to be the least squares norm (Watson 1984). The measurements, 

however, might contain some isolated large errors, and in this case, minimization of 

the £1 norm residual is recommended due to its "filtering" properties w.r.t . large 

errors. 

Using the £1 norm the identification problem becomes 

k 

minimize L lfi (<l>)I 
<l> i=l 

where f/<l>), i = 1, 2, ... , k, are defined in (4.54). 

4.8.2 6th Order Multi-Coupled Cavity Filter Example 

(4.55) 

In this example we deal with multi-coupled cavity narrow band-pass filters 

used in microwave communication systems (see Fig. 4.5). 

A narrow-band lumped model of an unterminated multi-cavity filter has 

been given by Atia and Williams (1972) as 

ZI = V, (4.56) 

where 

Z =j(sl + M), (4.57) 



· M2n . . 
-M2· • I 

. Min 

o------Jh ~~---r~~--·r~ 
w1 'i t" w2 w i wn 

M12 M23 Mi-1,i Mi,1+1 Mn-1,n 

M13 

M11 

• M1n 

Fig. 4.5 Unterminated coupled-cavity filter illustrating the coupling coefficients . 

\, 

00 ...... 
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s = :: ( =o - :o ) , (4.58) 

1 denotes an nxn identity matrix, M is an nxn coupling matrix whose (ij) element 

represents the normalized coupling between the ith and jth cavities, wo is the center 

frequency and t.w is the bandwidth parameter. The diagonal entries Mii represent 

the deviations from the synchronous tuning. 

In practice it is often desired to determine the actual filter couplings based on 

response (return loss or insertion loss) measurements. The problem can be formulated 

as an optimization problem (4.55) with thee 1 objective function. 

In this example reflection coefficient has been used as the filter response. A 

6th order filter centered at 4000 MHz with 40 MHz bandwidth is considered. 

Optimally designed filter parameters have been perturbed and the filter has been 

simulated. Reflection coefficient at 26 frequency points is used as the specification 

(measured response). The optimization problem (4.55) has been solved using quite 

arbitrary couplings as starting values. The results of parameter identification are 

summarized in Table 4.4. 

To demonstrate the properties of the £1 norm in the identification problem we 

deliberately introduce large errors to data representing the measurements. Table 4.5 

contains data (frequency point, reflection coefficient) used in the previous example 

and data with two large errors. Measurement 0.23 at 3986.0 MHz has been replaced 

by 0.75 and measurement 0.14 at 3990.0 by 0.40. 
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TABLE 4.4 

RESULTS OF IDE NTIFICATION FOR THE 6TH ORDER FILTER EXAMPLE 

Coupling 

M12 

M23 

M34 

M45 

Ms6 

Ml6 

M2s 

Number of 
Function 
Evaluations 

f1 Objective 
Function at the 
Solution 

Execution Time 
(secs) on 
VAX 11/780 

Optimal Design 
Value 

0.819006 

0.511264 

0.824890 

0.511264 

0.819006 

0.093863 

- 0.357895 

Perturbed Design 
Value 

0.859956 ( + 5%) 

0.526602 ( + 3%) 

0.791894 (-4%) 

0.526602 ( + 3%) 

0.859956 ( + 5%) 

0.087293 (-7%) 

- 0.393685 ( + 10%) 

12 

4.3155 x 10-5 

8.4 

Identified 

0.860020 

0.527018 

0.791897 

0.526183 

0.859893 

0.087287 

- 0.393684 
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TABLE4.5 

DATA USED AS MEASUREMENTS IN THE 6TH ORDER FILTER EXAMPLE 

Frequency Reflection 
(MHz) Coefficient 

3975 .0 0.99 

3977.0 1.00 

3979.0 0.89 

3980.0 0.58 

3982.0 0.26 

3984.0 0.23 

3986.0 0.23 

3986.0 0.23- 0.75 

3988.0 0.20 

3990.0 0.14- 0.40 

3992.0 0.08 

3994.0 0.01 

3996.0 0.05 

3998.0 0.08 

4000.0 0.09 

4002.0 0.08 

4004.0 0.05 

4006.0 0.01 

4008.0 0.08 

4010.0 0.14 

4012.0 0.20 

4014.0 0.23 

4016.0 0.23 

4018.0 0.25 

4020.0 0.55 

4022.0 0.99 

4024.0 0.99 



85 

The optimization problem (4.55) has been solved with the data containing 

two large errors. The results of identification are summarized in Table 4.6. All the 

couplings have been identified successfully in the presence of large errors. The f1 

objective function at the solution is equal to the sum of the absolute values of the 

errors introduced in the measurements. 

4.9 CONCLUSIONS 

In this chapter we have investigated the f1 optimization techniques in 

computer-aided engineering. The area of nonlinear f1 optimization is reviewed with 

the emphasis on the Hald and Madsen algorithm. The necessary conditions for 

optimality of the nonlinear f 1 problem subject to nonlinear constraints indicate that 

zeros of the nonlinear functions and active constraints play an important role in the 

characteristics of the f 1 problem. This fact has been used in fault isolation techniques 

for linear analog circuits and we have demonstrated that the Hald and Madsen f 1 

algorithm is very successful in methods for fault isolation in linear circuits under an 

insufficient number of independent voltage measurements. Singular and regular f1 

problems have been defined and a criterion for determining a singularity present in 

the f1 problem has been formulated. 

We have also discussed in detail tunable parameter selection in the optimal 

DCTT problem. A new mixed programming formulation of the problem is given 

which ensures that the solution gives the minimum number of tunable parameters to 

tune all outcomes. The f 1 type of objective function in the tuning problem has been 

examined and illustrated by a two-dimensional example. We have also presented a 

formulation using the f1 norm for model parameter identification problems and 

illustrated it with a 6th order multi-coupled cavity narrow bandpass filter. 
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TABLE 4.6 

RESULTS OF IDENTIFICATION FOR THE 6TH ORDER FILTER PROBLEM 

WITH DATA CONTAINING LARGE ERRORS 

Coupling 

M12 

M23 

M34 

M45 

Ms6 

Ml6 

M25 

Number of 
Function 
Evaluations 

e1 Objective 
Function at the 
Solution 

Execution Time 
(secs) on 
VAX 11/780 

Actual Value 

0.859956 

0.526602 

0.791894 

0.526602 

0.859956 

0.087293 

- 0.393685 

Identified Value 

0.860312 

0.527016 

0.791897 

0.526184 

0.859608 

0.087273 

-0.393680 

19 

0.77628 

12.5 



5 
A MINIMAX APPROACH TO THE BEST ALIGNMENT OF MECHANICAL 

SYSTEMS 

5.1 INTRODUCTION 

An important practical extension of the problems discussed in the previous 

chapters is the best alignment problem (Bandler, El-Kady, Kellermann and Zuberek 

1983b, 1984) . Generally, the optimal design problem is to ensure that a design, when 

manufactured, will satisfy specifications. In many practical situations, however, due 

to manufacturing errors, a product may not meet the specifications (Petersen and 

Johnson 1979, 1980, 1982) . There are two principal ways of tackling this problem: 

complete rejection and replacement of the manufactured part, or alignment or 

reworking (if possible) of the part. In the case of very expensive materials, the latter 

may be justified. The problem we address in this chapter is how to efficiently perform 

the part alignment process and, if reworking is needed, how to choose the best way to 

do it. We provide an attempt to formulate and to solve this problem using minimax 

optimization (Hald and Madsen 1981, Bandler and Zuberek 1982). 

First, basic definitions and concepts are given and the problem is formu

lated in terms of minimax optimization. Tolerance regions, error functions and their 

derivatives are described together with examples of tolerance regions . We show the 

test results obtained by running the program (Bandler, El-Kady, Kellermann and 

Zuberek 1983a) for several samples (Woodward Governor Company 1982). 

Conclusions and suggestions for further development are also given. 

87 
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5.2 PRELIMINARY CONCEPTS 

Suppose we have a set of points Pin a two-dimensional space 

m ~ 1, 

and a system of coordinates YOX associated with this set. Let 

t::,_ 
I = {1,2, ... ,m} 

be the index set for these points. 

(5.1) 

(5.2) 

The coordinates ofa point Pi E P, i EI, may be given either w.r.t. the main 

origin of the YOX system of coordinates or w.r.t. another point of the set P. Let 

O t::,_ 
I = {l , 2 , ... , nJ , (5.3) 

be the index set for points which are referenced to the main origin of the YOX system 

of coordinates . With each point Pi E P, 1 ::5 i ::5 no, we associate a set of indices Ii such 

that elements of Ii are indices of points referenced to Pi· The set Ii, 1 ::5 i ::5 no, may be 

an empty set or a subset of the set I. 

Let 1 :::::; e :::::; no. For 1 :::::; i < ewe have 

Ii~ 0, 
(5.4) 

which means that no points are reference to Pi E P, 1 ::5 i < e. Fore ::5 i ::5 no, we 

define the following index sets 

e r:,_ 
I = {n

0
+1, .. . ,n

0
+ne}, 

no !::,. 
I {n

0
+n _

1
+1, ... ,n

0
+n }. 

no no 

(5.5) 
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For each point Pi E P, i E I, we introduce a superscript indicating its reference point. 

For example, PiO(xiO, YiO), l ~ i ~ no, is the ith point of the set P with coordinates xiO, 

y} referenced to the main origin, Pii(xp + x), Jjo + Yii), no < i ~ m, e ~ j ~ no, is the 

ith point of the set P with coordinates xii, y) referenced to the Pjo· 

5.2.1 Definitions of Subsets of Points 

Three disjoint subsets of points can be distinguished in the set P: 

- regular points, Preg, 

- reference points, Pref, 

- referenced points, Prefd· 

For each of these subsets there is an associated index set. 

Definition 1 

A point Pij E Pis a regular point if its coordinates are given w.r.t. the main 

origin of the YOX sytem of coordinates and if it is not a reference point for other 

points. Formally, 

j = 0 , i E I t:.. {1 , 2 , .. . , e - 1} reg 
(5 6) 

Definition 2 

A point Pij E P is a reference point if its coordinates are given w.r.t. the 

main origin of the YOX system of coordinates and if it is treated as an origin for other 

points. Formally, 

!::,. 
j = 0 , i E I ref = {£, e + 1 , ... , nJ (5.7) 
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Definition 3 

A point Pi E Pis a referenced point if its coordinates are given w.r. t. another 

point of the subset Pref and if it is not a reference point for other points. Formally, 

j E l f, i E l fd £ {n0+ 1 , ... , m} ~ pi E P fd. re re t re 
(5 .8) 

The concepts and definitions introduced are illustrated in Fig. 5.1. 

5.2.2 Example 

Let P £ {p1,P2,p3,p4,p5,p6,P7}- From Fig. 5.1 we can define the following 

index sets: l = {1,2,3,4,5,6,7}, the index set for the set P; 10 = {1,2,3}, the index set for 

points referenced to the main origin of the YOX system of coordinates; 11 = 0, the 

index set for points referenced to Pl O; 12 = {4,5}, the index set for points referenced to 

p20; 13 = {6,7}, the index set for points referenced to p30. We can also define the index 

sets for regular points lreg = {l}, reference points Iref = {2,3} and referenced points 

lrefd = {4,5 ,6,7}. 

5.2.3 Tolerance Regions 

Suppose we have a set R of tolerance regions Ri, i E l £ {1,2, ... ,m}, in the 2-

dimensional space, 

(5.9) 

and a system of coordinates YOX associated with this set. We can define a one- to-one 

mapping g which assigns elements Ri E R to elements Pii E P, 

{g:P- R}. (5.10) 

The sets P, Rand the mapping g are shown in Fig. 5.2. 

The regions Ri E R, i E l, may have different shapes (e.g., circular, 

rectangular), they may be defined using polar coordinates, rectangular coordinates or 
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P3 
• 6 

• po 
2 

2 - 2 - 0 - 2---{) 
p 4 ( X 4 + X2' y 4 + y 2) 

3 - 3 ---{) - 3 ---{) 
P7 ( x7 + x3, Y 7 + Y 3) 

x 

Fig. 5.1 The set of points P and the YOX system of coordinates associated with it. 
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YOX g 

p~ g 

p; 
p~ 

g R2 
Ro 5 

2 

p~ 
g 

g 

Fig. 5.2 The mapping g: P - R. 
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combined polar and rectangular coordinates. Dimensions of tolerance regions may be 

given either w.r. t. the main origin of the YOX system of coordinates (for Ri = g(pi), i E 

IO = Ireg U Iref) or w.r.t. the reference point (for Ri = g(pi), i E Irefd). 

We can use the same notation indicating the reference points for tolerance 

regions as for points, e.g., RiO, 1 5 i 5 no, is the ith tolerance region of the set R with 

dimensions given w.r.t. the main origin of the YOX system of coordinates and Rij, 

no < i 5 m , e 5 j 5 no, is the ith tolerance region of the set R with dimensions given 

w.r.t. the transformed coordinates of Pjo from the YOX to the YOX system of 

coordinates . 

5.2.4 Transformation of Coordinates 

The two systems of coordinates, YOX and YOX are related by the following 

transformation of coordinates 

(5.11) 

where 

t:,. T 
<p O = [<t>i <P2 <P3l ' 

(5.12) 

is a set of variables relating the two systems of coordinates (Fig. 5.3). 

5.3 FORMULATION OF THE PROBLEM 

The first step in the solution of the best alignment problem is to find <l>o 

such that the maximum number of points p) E P , i E I, j E I ref or j = 0, are inside or on 

the boundary of the corresponding Rij E R, Rij = g(pij). However, the solution to the 

problem stated above may not be unique and may not be equal to the number of points 

m. 
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y 

Fig. 5.3 Transformation of coordinates relating the two systems of coordinates. 
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If it is not possible to find <l>o = [¢1 ¢2 cp3]T such that all m points are inside 

or on the boundary of the corresponding tolerance region then it is necessary to delete 

one or more points in the set P to ensure that all other points satisfy this condition. 

In general, the number of variables for the best alignment problem depends 

on the type of the point (regular, reference or referenced) being a candidate for 

deletion. The vector of variables <l> may be extended with new variables, which are 

the coordinates ofreference points if these are the candidates for deleting. 

Introducing new variables is necessary when deleting a reference point, 

because we have to determine the locations of all tolerance regions referenced to it. 

The general form of the vector of variables for the best alignment problem is 

(5.13) 

where 

/':,. 
1aelref = Iref n 1ael' 

(5.14) 

and k is the cardinality of laelref. The index set lael represents deleted points. For 

example, if the ith point of the set P (i E Iref) is a candidate for deleting then <l>k 

reduces to the form <l>1 T = [¢1 ¢2 q:>3 Xi yiJ, i E Iaelref. If the ith and jth points (ij E 

Iref) are candidates for deleting then <1>2T = [¢1 ¢2 q:>3 Xi Yi Xj YjL ij E Iaelref· If the 

candidates for deleting are not reference points then <l>k = <l>o. 

The best alignment problem can be formulated as 

subject to the constraint 

minimize 
I 

Ide! E 2 

min max fi(<l>k) '."'::: 0, i E I' £: (I - Ide!) U Idelref , 

<l>k 

(5.15) 

(5.16) 

where I is the index set for points Pi which are to be aligned, Iael is the index set for 

points which should be deleted, 21 is the family of all subsets of the set I, nae! is the 
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· cardinality of Iael and <l>k is the vector of optimization variables corresponding to the 

set lael· Variables <t>1, <t>2 and ¢3 relate the YOX, and the YOX systems of coordinates 

and Xik, Yik are transformed coordinates (from YOX to YOX) of a reference point 

actually being deleted. The error function fi(<l>k) is associated with the point Pij to 

indicate whether the point Pij is in (fi(<l>k) ~ 0) or out (fi (<l>k) > 0) of the tolerance . · , 

region Rij = g(p)). 

The index set I' m (5.16) also contains the indices of deleted reference 

points in order to ensure that the error function corresponding to the new location of a 

reference point determined by the optimization (coordinates of the reference point 

considered are additional variables of the problem) will satisfy the constraint (5 .16). 

This is not required for the deleted regular or referenced points since no other points 

and tolerance regions are referenced to them. 

5.4 ALGORITHM FOR SOLVING THE PROBLEM 

The solution to the best alignment problem consists of two stages . The first 

stage corresponds to a discrete (or combinatorial) minimization of the number of 

points which should be deleted from the original set of points, and the second stage is 

an unconstrained minimax optimization of a set of error functions fi, i e I', determined 

by the first stage. The discrete minimization of the first stage is usually implemented 

as a systematic search of the solution in the family 21 of all subsets of the set I. It is 

convenient to represent this search in the form of a multilevel tree in which the root 

(level O) corresponds to the set Iael = 0 (0 denotes the empty set), the level 1 contains 

all the single element subsets Ilael,1 = {1}, Ilael ,2 = {2}, ... , the level 2 all the subsets of 

I which contain two elements, and so on . The first stage minimization traverses the 

tree level after level until the solution is found, i.e., until such a subset Iael is 
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· encountered for which the constraint (5.16) is satisfied. It can be observed, however, 

that the minimax optimization of the second stage, which is performed for each step of 

the first stage search, can be used to eliminate those nodes (and their subtrees) of the 

search tree which cannot influence the solution. In fact, if the minimax constraint 

corresponding to the subset Ide! at a particular level of the search tree is not satisfied 

then the next level subsets should be derived from the Ide! of the previous level by 

adding only the indices of those points which correspond to the active error functions 

at the solution <l>k * of the minimax optimization since the remaining, nonactive error 

functions do not affect the solution. This observation is the basis of the implemented 

combinatorial search algorithm which dynamically creates and traverses the reduced 

search tree. 

5.4.1 Details of the Algorithm 

The algorithm always starts with the set Ide!= 0 (the root of the tree) and 

<l>k = <t>o = 0. If the minimax objective function 

F(<t>
0
) = max fi(<t>

0
) , 

iEI 

(5.17) 

at the solution <t>o"' is nonpositive, F(<t>o*) :::::; 0, then <t>o* corresponds to the best 

alignment solution, and the solution is optimally centered. If F(<t>o*) > 0, there is no 

possible alignment of all the points Pi, i E I, and at least one of the points has to be 

deleted to allow the alignment of the remaining points. The candidates for deletion 

are the points for which the corresponding error functions are active at the solution 

<l>k *, and their indices are attached to the root Io of the search tree, creating the level 1 

nodes . The search is continued node after node of the created level and the minimax 

optimization with one less function (except the case of deleting a reference point) is 

repeated at each node. During the traversal of the level 1 nodes, the new nodes are 
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attached to the search tree creating the. next level, and so on, until a subset Idel is 

found for which the minimax constraint is satisfied, F(<t>k *) 5 0. It should be noted 

that corresponding to each node of the search tree there is a unique associated index, 

and the set Idel corresponding to the node j is determined as the set of indices of the 

path from the node j to the root of the tree . 

5.5 TOLERANCE REGIONS, ERROR FUNCTIONS AND THEIR 

DERIVATIVES 

To form the error functions for the best alignment problem we have to 

decide in which system of coordinates these functions will be expressed. It is 

convenient to choose the system of coordinates associated with the regions, first of all 

because it is easier to transform points than tolerance regions to the new system of 

coordinates, and second, because the derivatives of the error functions w.r.t. 

optimization variables can be easily obtained using transformed coordinates of points 

and the Jacobian of the transformation. 

5.5.1 Preliminary Considerations of Derivatives 

For <l>k = <t>o (no deletions of any points or deletions only of regular or 

referenced points) the error function is of the form 

fi(<t>o) = f/x/<t>o),yi(<t>J), i E I-Idel. 
(5 .18) 

The derivative offi w.r.t. <t>o can be written as 

(5.19) 

where 
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a f. ax. ay. 
l l l 

a ¢1 a¢1 a¢1 

af. af. ax. ax. ayi ay. 
(5.20) l 6. l l 6. l ~ l 

a <Po a ¢2 a <Po a¢2 a <Po a ¢2 

a f. ax. ay. 
l l l 

a ¢ 3 a¢3 a¢3 

The terms of the form (afi)/(axi) , (a fi) /(ayJ depend on the shape of the tolerance region 

and usually a re not very complicated because the function fi a nd the coordinates xi,Yi 

are expressed in the same system. The terms of the form (axi)/(aq>o), (ayi)/(aq>o) depend 

only on the transformation formula and are the same for the derivatives of all 

minimax functions . They can be calculated once for the actual point <l>o and used for 

all functions . 

Partial derivatives (axi)/(aq>o) and (ayi)/(a<t>o) can be arranged in a matrix 

called the Jacobian of the transformation 

ax. ax ax . 
l l l 

a ¢1 a¢2 a ¢3 
Ji~ 

0 -
ay. 

l 
ay 

l 
ay. 

l 

a ¢1 a¢2 a ¢ 3 

which, for the transformation (5.11) takes the form 

J; ~ [: 0 

1 

(- x i sin<j,3 - : i cos<j,3] . 

( x i cos¢3 - y i sin¢3) 

5.5.2 General Formulation of Derivatives 

(5.21) 

(5.22) 

For <Pk ct: <l>o (deletion of reference points) depending on the type of a point 

for which we form the error function we have three cases: 
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il i2 ik 
i E I - Id I f - I - I - . . . - I e re ( 

regular point or reference ) 
point not deleted 

The error function is of the form 

f (<t>k) = f (x.(<t>o))' Y (<t>o)). 
l l l l 

(5.23) 

The derivatives w.r.t. optimization variables <l>o are given by (5 .19) and the 

derivatives w.r.t. additional variables are 

a f. 
l 

= 0' 

a f. 
l 

ax. = 0' 

\ 

a f. 
l 

ay 
11 

= 0' 

a f. 
l 

= 0' 

where it, ··· ,ik E Idelref. 

i E I delr ef (reference point deleted) 

The error function is of the form 

f.(<t>k) = f.(x y. , ... , X. y . 
1 1 l l ' 11 lj' lj 

and the derivatives are 

x. y. ) 
\· \ 

(5.24) 

(5.25) 
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a f. 
l 

a <Po 
= 0' 

a f. { \.) for i = i. 
l J 

ax. for i :;t: i. 

(5 .26) 

l. 
J 

J 
l. E Idelref ' j = l, ···, k. J 

a f. { \.) for i = i. 
l J 

ay. for i :;t: i. 
l. J J 

i 1 i2 !. 

iEI UI U ... uIJu 
ik 

U I (referenced point) 

The error function is of the form 

f. ( <t>k) = f. (x. ( <t>0) , y . ( 4>0) , x. , y. , ... , x. , y. , ... , x . , y. ) 
l l l l 11 11 lj lj lk lk 

(5.27) 

and the derivatives are given by (5.19) for <t>o and w.r.t. additional variables by 

l. 

a f. { (. .. ) for i E I J, 
l 

ax. l. 
l. 0 fori!t'IJ, J 

(5.28) 
l. 

a f. { (. .. ) for i E I J , 
l 

ay. !. 
l. 0 for i e I J. J 

5.5.3 Tables of Error Functions and Derivatives 

For the general form of the vector of variables, given by (5.13), we form 

error functions and derivatives for three cases: 

1) regular point or reference point not deleted; 

2) reference point deleted; 

3) referenced point. 
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The general form of derivatives offi w.r.t. <l>o is given by (5 .19), where the 

terms of the form (axi)/(a<l>ol, (ayil/(a<l>o) may be calculated as in (5 .22), and the terms of 

the form (afi)/(axi), (afi)(ayi) are tabulated in Tables 5.1 - 5.3 for each type of tolerance 

region. The coordinates Xi, Yi are transformed coordinates of points using the 

transformation (5.11). The derivatives of error functions w.r.t . additional variables 

are a lso given in these tab les. 

For the circular to lerance region error functions and derivatives are given 

in Table 5.1. As an example, consider three points with circular tolerance regions 

shown in Fig. 5.4. Assume that x20, y20 are additional variables, so 

The error functions and derivatives for p10 (regular point), p20 (reference point 

deleted), and p32 (referenced point) can be calculated using formulas given in Table 

5.1. 

For other types of tolerance region the location of a point w.r. t. 

corresponding tolerance region can be characterized by a system of four linear or 

nonlinear functions. For a regular point and rectangular tolerance region (Fig. 5.5), 

these functions result from the inequalities 

and have the form 

0 < 0 < 0 
xiL - xi - xiU' 

2 0 0 f . = x. - x.u, 
l l l 

(5.29) 

(5.30) 

(5.31) 

(5 .32) 

(5.33) 

(5.34) 



103 

TABLE 5.1 

DERIVATIVES OF ERROR FUNCTIONS FOR CIRCULAR TOLERANCE REGION 

af./ax. 
l l 

af.!ay. 
l l 

af.lax. 
l l. 

J 

af./ay. 
l l. 

J 

Regular Point or 
Reference Point 

Not Deleted 

f. = D - r . 
l l 

-AID 

-BID 

0 

0 

A= x 0 
- x 0 

n. 1 
1 

B = y~- - y~ 

Reference Point 
Deleted 

f. = D-r. 
I l 

* 

* 

- AID, i = \ 

0, i :;t: i. 
J 

-BID, i = \ 

0, i :;t: i. 
J 

i. 0 
A = x J + x. - x. 

1 n. 1. 1 
l J 

i. 0 
B1=yl+y. - y. 

n. t. 1 
l J 

D = (A 2 + B2)112 
1 1 1 

Referenced Point 

l. 

A/D 1, i E I J 

i. 
0, i ill J 

i. 

B/D 1, i E I J 

i. 
0, ii I J 

ax. ay af_ 

* For this case, terms -
1 

, -
1 

are equal to zero, and consequently -
1 

= 0 . 
a<t>o a<t>o a<I>o 
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TABLE 5.2 

DERIVATIVES OF ERROR FUNCTIONS FOR RECTANGULAR 
TOLERANCE REGION 

Regular Point or Reference Point not Deleted 

f6 1 0 0 f2 = xo - xou f. = x.L - x. 
l l l l l l l 

af6!ax 0 -1 1 
l l 

af6!ayo 0 0 
l l 

iJf5 /ax. 0 0 
l l. 

J 

iJf5 Jay. 0 0 
l l. 

J 

Reference Point Deleted 

f6 1 0 0 2 0 0 
f. = x.L -x . f. = X. - X.U 

l l l l l l l 

-1 , 1= 1. 1, 1=1. 
iJf5 /ax. 

J J 

l l. 0, i :;c i . 0, i :;c i. 
J J J 

iJf5 lay. 0 0 
l l. 

J 

Referenced Point 

f6 
1 0 i. 2 i. 0 

f. =x . +x.JL - x. f. =x . - x.lu +x. 
l l 1. l l l l l l. 

J J 

af61ax. -1 1 
l l 

~/ayi 0 0 

l. 1. 

iJf5 Jax. 
l,iEIJ - 1, iE IJ 

l l. l. l. 
J O,iiIJ 0, i e I 1 

iJf5 lay. 0 0 
l l. 

J 

3 0 0 f. = y.L - y . 
l l l 

0 

- 1 

0 

0 

0 

- 1, i=\ 

0, i :;c ij 

r3 i. 0 
. = y ·i + y. - y. 
l l l l 

0 

- 1 

0 

l. 

l,iEI J 
i. 

0, iiIJ 

0 

1 

0 

0 

0 

1, i=i. 
J 

0, i:;ci, 
J 

f'1 0 1. 0 . = y. - (y_Ju +y. ) 
l l l l. 

J 

0 

1 

0 

i. 
- 1, iE Il 

i. 
0, i e I 1 
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TABLE 5.3 

DERIVATIVES OF ERROR FUN CTIONS FOR X-R TOLERANCE REGION 

Regular Point or Reference Point not Deleted 

f8 1 0 0 
f. = X.L -X. 

I I l I 

af.lax0 -1 
I I 

af.1ay° 0 
I I 

af.lax 0 
I I. 

J 

af.lay 0 
I I. 

J 

Reference Point Deleted 

f8 1 0 0 
f. = X.L - X. 

I I I I 

- 1, 1= 1. 

af.1ax 
J 

I I. 0, i :;t: i. J J 

af.lay. 0 
I I. 

J 

Referenced Point 

f8 
I 

af5lax . 
1 I 

af.lay. 
1 I 

af.1ax. 
I l. 

J 

af.lay. 
I I. 

J 

0 
A= x - X.' 

I l. 
J 

1 0 i. 
f. =x. +x-L - x. 

I l. I I 
J 

-1 

0 

i. 
1, i E I J 

i. 
0, ilt'IJ 

0 

2 0 0 f. = X. - X.U 
I l l 

1 

0 

0 

0 

2 0 0 
f. = x. -x .u 

I I I 

1, 1= l. 
J 

0, i:;t: i. 
J 

0 

2 i. 0 
f. = x _ - (x -~ + x . ) 

I I I I. 
J 

1 

0 

l. 

- 1, iE IJ 
I. 

0 , i !t' I J 

0 

0 

0 

f'.3 = RL - E 
I I 

0 -x./E, 1 = l. 
I J 

0, i :;t: i. 
J 

0 -y./E, 1 = l. 
I J 

0, i :;t: i . 
J 

f'.3= RL - D 
I I 

- AID 

-BID 

i. 
AID, i E I J 

i. 
0 , i !t' I J 

i. 
BID, i E I J 

I. 

0, i !t' I J 

r4 = E - R u 
I l 

x 0IE 
I 

0 y. lE 
I 

0 

0 

r4 = E - Ru 
l I 

0 i = i. x.lE, 
I J 

0, i :;t: i. 
J 

0 i = i. y.lE, 
I J 

0, i :;t: i. 
J 

r4=D-Ru 
l I 

AID 

BID 

I. 

-AID, i EI J 

[. 

0, i e I J 
i. 

-BID, i E I J 

I. 

0, ill I J 
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Fig. 5.4 Points with circular tolerance regions. 
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Fig. 5.5 Regular point with the rectangular tolerance region. 
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For a regular point and the X-R tolerance region (Fig. 5.6), the error 

functions result from (5.29) and from 

(R~L)2 $ (x~2 + (y~2 
$ (R~

0
)
2 , (5.35) 

and fil, fi2 have the form of (5.31), (5.32), respectively, while fi3 and fi4 can be 

expressed as 

(5.36) 

(5.37) 

Finally, for a regular point and the Y-R tolerance region (Fig. 5.7), the error 

functions result from (5.30) and (5.35), and fil, fi2, fi3, fi4 are given by (5.33), (5.34), 

(5.36) and (5.37), respectively. 

For each of these tolerance regions, we represent a point using only one 

error function. The four error functions may be combined into one using the following 

functions (Bandler and Charalambous 1972a, 1972b) 

where 

f. = 
1 

max 
s E S

1 

forM -:;,t; 0, 

forM = 0, 

C\l , S
1 

g, {1,2,3,4}, 

forM > 0, 

forM < 0, 

(5. 38) 

(5 .39) 

(5.40) 

(5.41) 

(5.42) 
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Fig. 5.6 Regular point and the X-R tolerance region . 
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Fig. 5.7 Regular point and the Y-R tolerance region. 

0 
YiU 

x 



111 

The gradient vector of the combined error function is given by 

I: [ f~(<l>) 1q-1 (\<t>) ,forM ':.t:. O. 

sE S M 

(5.43) 

From (5.38) and (5.43), it can be seen that if fi 5 (<l>), s = 1,2,3,4, are continuous with 

continuous first partial derivatives, then, under the stated conditions, the function fi 

is continuous everywhere with continuous first partial derivatives (except possibly 

when both M = 0 and two or more maxima are equal). For p - co, practically 

f = max (£") 
i s E Sl i 

The elements of the gradient vector fi 's, sE Si, for the rectangular and the X-

R tolerance regions are given in Tables 5.2 and 5.3, respectively. For the Y-R 

to lerance region error functions and their derivatives are the corresponding entries of 

the tables for the rectangular and the X-R tolerance regions. 

5.6 COMPUTER IMPLEMENTATION OF THE ALGORITHM 

(Bandler, El-Kady, Kellermann and Zuberek 1983a) 

In this section, a Fortran program for solving the best alignment problem is 

briefly described. It has some limitations, resulting from the fact that it was designed 

for solving particular practical problems (e.g., the number of different shapes of 

tolerance regions is limited to 4). The program employs a package for linearly 

constrained minimax optimization (Hald 1981) available in the form of a library of 

subroutines. 

The structure of the program is shown in Fig. 5.8. The main segment is 

BSTALN. It reaqs the data from the input file SAMPLE, prints the data, calls 

subroutine FDF at the starting point, calls subroutine PRSRCH and prints the final 

results. The subroutine PRSRCH organizes the workspace memory for SEARCH and 
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BSTALN 

I 

PRSRCH SEARCH INSRCH 

MMLAIQ SOLVER 

TOLCIR FDF TOL XY 

TOL XR TOL YR 

Fig. 5.8 Structure of the program for the best alignment problem. 
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calls SEARCH . The subroutine SEARCH implements the decision- tree structure 

described earlier. It calls SOLVER and INSRCH. The subroutine SOLVER prepares 

parameters and calls the minimax optimization routine MMLAlQ The subroutine 

INSRCH eliminates identical entries in the decision-tree structure . The subroutine 

FDF performs the transformation of coordinates, evaluates error functions and 

calculates final derivatives. [t calls TOLCIR, TOLXY, TOLXR and TOLYR. 

Subroutines TOLCIR, TOLXY, TOLXR and TOLYR calculate the error function and 

its derivatives for the circular, rectangular, X-R and Y-R tolerance regions, 

respectively, using p = oo . 

For the purpose of illustration an artificial simple example has been 

constructed. 

5.6.1 Example (Bandler, El-Kady, Kellermann and Zuberek 1983b) 

Suppose we have a set of points P ~ {pi, P2, p3, p4, p5} and a set of tolerance 

regions R~{R1, R2, R3, R4, Rs}. Fig. 5.9 illustrates the situation before the alignment. 

Error functions at the starting point <t>oT = [0.0 0.0 0.0] are the following 

f1 = 2.071 x lQ-1, 

f2 = - 5.000 x lQ-1, 

f3 = 5.000 x 10-1 , 

f4 = - 5.000 x 10-1, 

f5 = 5.000 x 10-1. 

Fig. 5.10 shows the situation after running the alignment program. The best 

alignment was found at <t>oT = [- 2.316 x 10-1 - 2.792 x lQ-1 4.758 x 10-2] with point 5 

deleted. Remaining error functions at the solution are 

f1 = - 1.540 x 10-1 , 
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y y 

x 

Fig. 5.9 Points and tolerance regions before a lignment. 
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-x 
x 

Fig. 5.10 Results of running the alignment program. 
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f2 = - 1.206 x lQ-1, 

f3 = - 1.204 x lQ-2, 

f4 = - 1.204 x 10-2. 

5.7 TEST RESULTS ON PRACTICAL PROBLEMS 

The program described in the previous section has been extensively tested. 

It has been run for seven sets of data (Woodward Governor Company 1982). The data 

resulted from practical problems of part alignment in manufactured mechanical 

systems and have been col1ected from inspecting actual parts, so the order of error 

function values represents the real life situation. The points represent holes in one 

part which have to meet certain specifications when coupled together with another 

part. Test samples have different numbers of points, varying from 5 to 13 and 

specified tolerance regions of different shapes. To give an idea of what the samples 

are like, we describe briefly two simple samples and one interesting sample in more 

detail. 

Sample 1 (Table 5.4) 

This sample has 5 points, 1 with circular and 4 with the rectangular 

tolerance regions. It has no reference points. Original1y, the number of points out-of

tolerance was 4. After 12 iterations of stage 0, the minimum value of the maximum 

error function was 3.6078 x 10-4. Three points (1, 3 and 4) have been selected as 

potential candidates for deleting. It turns out that deleting point number 1 gives the 

solution for which the remaining error functions are negative and the maximum error 

at the solution was - 6.45668 x 10- 4 (after 25 additional minimax iterations). 
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TABLE 5.4 

DATA FOR SAMPLE 1 (Woodward Governor Company 1982) 

Point Tolerance Origin Actual 
Code + Code * x 

1 0 0 0.0000 

2 12 0 -0.8800 

3 12 0 0.6589 

4 12 0 0.8990 

5 12 0 - 0.5635 

Actual 
y 

0.0000 

1.3682 

0.7499 

- 0.4414 

- 1.5254 

XN 

0.0000 
XL 

-0.8780 

0.6610 

0.8990 

- 0.5650 

+ The tolerance code is one of four (0, 12, 13, 23), where 

0 - the code for the circular tolerance region, 
12 - the code for the rectangular tolerance region, 
13 - the code for the X-R tolerance region, 
23 - the code for t he Y-R tolerance region. 

Tolerances 

YN rN 

0.0000 0.0010 

XU h 

- 0.8750 1.3690 

0.6630 0.7500 

0.9010 -0.4410 

- 0.5620 - 1.5250 

Yu 

1.3720 

0.7520 

-0.4380 

- 1.5520 

* Any point with an origin code of O is referenced to the main origin of x = 0.0, 
y = 0.0 . Any other origin code refers to the point by that number on the same 
sample. For instance, for an origin code of 4, the actual x and y dimensions are 
measured from the actual x and y dimensions of point number 4. 
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Sample 2 (Table 5.5) 

This sample has 7 points, all with the circular tolerance regions and all 

referenced to the main origin. Originally, the number of points out-of-tolerance was 

5. After 15 iterations, the solution was found with no deletions and the maximum 

error at the solution was -7.73563 x 10-4. 

Sample 6 (Table 5.6) 

This sample is very interesting: it has 11 points, 4 with circular, 4 with 

rectangular, 1 with the X-R and 2 with the Y-R tolerance regions. Five points are 

referenced to points other than the main origin. Previous work on the best alignment 

problem (Peterson and Johnson 1980) does not permit a reference point to be deleted 

(translated) . In our approach, any point can be deleted. Originally , there were 2 

points out-of-tolerance, and one of them is a reference point. When a point which is an 

origin for one or more points is found to be out-of-tolerance, there is a good chance that 

any point referenced to it will also appear to be off location. In this sample, points 7 

and 8 are referenced to point 1. Points 1 and 8 were both found to be out-of-tolerance . 

However, if point 1 was shifted by the amount specified (in other words, if hole 

number 1 was plugged and re-drilled in the proper location), point 8 would be in

tolerance without any rework needed. Thus, in a practical mechanical sense, there is 

only one point out-of-tolerance, that being point 1 (Peterson and Johnson 1980) . 

Results of running the program for Sample 6 show that indeed deleting reference 

point 1 (plugging and redrilling hole) implies that all other points will be in-tolerance 

and the maximum error at the solution is -1.9911 x lQ-4 . 

We can observe how point 1 was selected for deleting from the details of the 

solution, given in Table 5.7. From the results of minimax optimization at stage 0, 
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TABLE 5.5 

DATA FOR SAMPLE 2 (Woodward Governor Company 1982) 

Point Tolerance Origin Actual 
Code+ Code* -x 

1 0 0 0.0000 

2 0 0 - 0.6412 

3 0 0 - 1.2778 

4 0 0 - 0.6295 

5 0 0 0.6499 

6 0 0 1.2846 

7 0 0 0.6393 

+ see Table 5.4 for code explanations. 
* see Table 5.4 for code explanations. 

Actual Tolerances 
y 

XN YN 

- 0.0001 0.0000 0.0000 

1.1080 - 0.6405 1.1094 

- 0.0052 - 1.2810 0.0000 

- 1.1101 -0.6405 - 1.1094 

-1.1055 0.6405 - 1.1094 

0.0083 1.2810 0.0000 

1.1126 0.6405 1.1094 

rN 

0.0050 

0.0025 

0.0025 

0.0025 

0.0025 

0.0025 

0.0025 
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TABLE 5.6 

DATA FOR SAMPLE 6 (Woodward Governor Company 1982) 

Point Tolerance Origin Actual Actual Tolerances 
Code+ Code* x y 

XN YN rN 

l 0 0 2.3970 -0.9508 2.3950 - 0.9500 0.0010 
2 0 0 - 1.6955 -1.9621 - 1.6960 - 1.9620 0.0010 

XL XU h Yu 

3 12 0 0.6620 0.7507 0.6610 0.6630 0.7500 0.7520 
4 12 0 0.8998 - 0.4393 0.8990 0.9010 - 0.4410 - 0.4380 

h Yu RL Ru 

5 23 0 - 0.5629 - 1.5231 - 1.5260 - 1.5210 1.6225 1.6260 

XL XU YL Yu 

6 12 0 - 0.8773 1.3700 - 0.8780 - 0.8750 1.3690 1. 3720 

XN XN rN 

7 0 1 - 2.8646 3.5015 - 2.8640 3.5010 0.0010 

XL XU YL Yu 

8 12 1 - 0.8764 2.3274 - 0.8750 - 0.8710 2.3250 2.3290 

XN XN rN 

9 0 4 0.6653 - 0.7855 0.6650 - 0.7860 0.0010 

h Yu RL Ru 

10 23 5 - 0.9642 1.0227 1.0210 1.0260 1.4053 1.4073 

XL XU h Yu 

11 13 6 - 0.0641 - 1.1348 - 0.0660 - 0.0640 1.1358 1.1378 

+,*see Table 5.4 for code explanations. 
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TABLE 5.7 

RESULTS OF BEST MINIMAX ALIGNMENT FOR SAMPLE 6 

(Woodward Governor Company 1982) 

Values of Error Functions+ 

Error Starting Stage O Optimization Optimization with 
Function Point (no deletions) Point 1 Deleted 

(translated) 

1 1.1540659 x lQ-3 7.8766877 x 10-4 - 6.0836163 x 10-4* 

2 - 4.9009805 x 10-4 7.8054088 x lQ-4 - 3.1859860 x 10-4 

3 - 7. 0000000 x 10-4 - 6.7451522 x lQ-4 - 6.0366698 x 10-4 

4 - 8.0000000 x 10-4 - 5.1145712 x 10-4 - 6.0460585 x 10-4 

5 - 1.2887855 x 10-3 -4.1859431 x 10-4 - 1.3816043 x 10-3 

6 - 7.0000000 x 10-4 -6.1087476 x 10-4 -1.9911453 x 10-4 

7 -2.1897503 x 10-4 7.8766877 x 10-4 - 1.9911453 x lQ-4 

8 1.4000000 x lQ-3 7.8766877 x 10-4 - 1.9911453 x 10-4 

9 -4.1690481 x 10-4 -2.2387620 x 10-4 - 1.9911453 x 10-4 

10 - 2.5929437 x 10-4 - 2.7637365 x 10-4 - 1.9911453 x lQ-4 

11 -1.0000000 x 10-4 6.1249301 x 10-4 - 4.0926333 x 10-4 

+ Maximum error functions are underlined 

* This error function value corresponds to the new location of point 1. 
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points 1, 7 and 8 are selected as candidates for deleting. Results of minimax 

optimization with point 1 deleted (translated) show that a solution can be obtained 

with only one point deleted. 

The results of running the program for all test samples are summarized in 

Table 5.8. 

5.8 CONCLUDING REMARKS 

This chapter provides an attempt to formulate and to solve the best 

mechanical alignment problem using minimax optimization. Results of running the 

best alignment program for practical problems (Table 5.8) confirm the efficiency of 

our approach. The concepts introduced and the algorithm proposed are described in 

this chapter by tackling a particular mechanical engineering problem. However, this 

class of problem may come from different sources and further generalization is 

possible. One natural extension of this approach, which may be very useful from the 

practical point of view, is considering alignment problems in three dimensions. 

Another suggestion for further exploration is the investigation of the least pth 

formulation to reduce the number of minimax functions. 

The problem which originated from aligning mechanical designs is here 

formulated as a general optimization problem and we feel that this approach should 

prove useful in many other areas where problems of a similar nature may exist. 
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TABLE 5.8 

RESULTS OF RUNNING THE BEST ALIGNMENT PROGRAM 

ON DATA SUPPLIED BY THE WOODWARD GOVERNOR COMPANY 

CYB ER 
170/730 

No. of Points Results Execution 
Sample Total No. Originally Out (Points Time in 
No. of Points of Tolerance Deleted) Comments Seconds 

l 5 4 l Reg. Point Deleted 0.7 

2 7 5 0 No Deletions 0.4 

3 11 2 1 Ref. Point Deleted 0.9 

4 11 3 2 Reference and Reg. 2.8 
Points Deleted 

5 11 3 2 Reference and Reg. 1.5 
Points Deleted 

6 11 2 1 Reference Point 1.2 
Deleted 

7 13 3 3 Regular Points 3.6 
Deleted 
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LOAD SHEDDING AND GENERATION RESCHEDULING IN POWER 

SYSTEMS 

6.1 INTRODUCTION 

This chapter provides an attempt to formula te and to solve the load 

shedding and generation rescheduling problem in an emergency state using a 

nonlinear optimization algorithm with the f1 type objective function. 

The problem arises in many practical situations when an operating power 

system is under emergency conditions and some security constraints imposed on the 

system are violated. The control action taken may involve load shedding and 

generation rescheduling. The problem can be formulated as an optimization problem 

with the objective of minimizing the amount of customer load curtailments. We are 

concerned with the problem of selecting a possibly small subset of loads to be shed 

from the set of all candidates for shedding. 

From the security (in the static sense) point of view there are two types of 

contingencies (Talukdar and Wu 1981): 

a sudden change in the power injection to the network caused by the partial or 

complete loss of a generator, load or tie ; 

a sudden change in the network's configuration. 

If the system is to be normal and secure in the static sense it must satisfy a 

set of algebraic constraints that can be written in the form 

h (x, u) = 0, 
(6.1) 
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g (x, u) ;;;:: 0, (6.2) 

where u is the set of control variables (decision variables) a nd x is the set of state 

variables (dependent variables). Equation (6.1) is a set of equality constraints called 

the power flow equations and equation (6.2) is a set of inequality constraints often 

called security constraints. 

If the system is insecure or in an emergency condition the control action 

taken to remove the violations of security constraints (6.2) (assuming that the system 

survives the outage and equation (6. 1) can be solved) may involve load shedding and 

generation rescheduling. In such situations we usually want to minimize the control 

action (generation rescheduling and load shedding), often considering load shedding 

only as a last resort. If the load shedding is absolutely necessary to remove the 

inequality constraints violations then the objective may be to select the minimum 

number of interruptible loads for partial or complete curtailment. 

Several approaches have been investigated to find post emergency schedule 

with the minimum of load shedding, however, in none of them the problem of selecting 

the minimum number of loads for shedding has been addressed directly. 

A simple linear model which takes into account only the real power 

injections and voltage angles has been used for generation and load rescheduling 

(Ghoneim, Askourah and Rahman 1977, Stott and Hobson 1977a, 1977b, Chan and 

Schweppe 1979). Special techniques were used to improve the performance of 

algorithms proposed such as the dual simplex method (Stott and Hobson 1977a, 

1977b) and sparse linear programming (Chan and Yip 1979) . 

The real-power-voltage-angle model may not be adequate for certain 

applications such as real-time emergency state control or detail off-line studies 
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(planning) where the voltage profile and the scheduling of reactive power sources are 

important (Chan and Schweppe 1979). 

A different approach, which does not use optimization techniques has been 

presented in Medicherla, Billinton and Sachdev (1979, 1981). It basically consists of 

two sets of equations. First, a set of equations for determining the desired increments 

in state variables to alleviate line overloads is developed and then the second set of 

equations is developed, which can be solved for determining the generation 

rescheduling and load curtailment pattern to satisfy the calculated changes in state 

variables. 

Recently, a multi-stage formulation of the generation rescheduling and 

load shedding problem has been proposed (Krogh and Javid 1983). It includes a 

technique for modeling the short-term thermal capacity of a transmission line, a 

generation scheduling model and constraints and a linear load flow model. The multi

stage formulation is then cast into a linear programming framework. 

The purpose of this chapter is to give a general formulation of the load 

shedding and generation rescheduling problem which uses the Han-Powell algorithm 

for the general nonlinear programming problem (Han 1976, Powell 1977) with the f 1 

type objective function suggested in Bandler, El-Kady, Kellermann and Zuberek 

(1983b) to select a possibly small subset of loads to be shed from the set of all 

candidates for shedding. The Tellegen theorem method for power system sensitivity 

calculations (Bandler and El-Kady 1980a, 1980b) and the fast decoupled load flow 

technique (Stott and Alsac 1974) are employed. Numerical results for a 6-bus and a 

26-bus power systems illustrate the performance of the method proposed. 
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6.2 FORMULATION OF THE PROBLEM 

6.2.1 Objective Function and Constraints 

The load shedding and generation rescheduling problem can be formulated 

as a mathematical optimization problem which attempts to minimize the number of 

loads to be shed under emergency conditions which can take the form of line outages 

or generator outages (partial or complete). The objective function used in this 

approach is of the e 1 type. Formally the problem is to 

minimize 

IV/Pg,Pe e = 1, ... , nL, 

subject to (6.1) and (6.2) corresponding to the emergency conditions, where 

IV gl is the voltage magnitude at node g, 

Pg is the real power injected at generator node g, 

Pe is the real power injected a t load node e, 

PeO is the nominal real load power at node e. 

(6.3) 

We let subscripts e = 1,2, ... ,nL, correspond to PQ buses (load buses), subscripts g = 

nL + 1, ... , nL + nG, correspond to PV buses (generator buses), and subscript n = nL + 

nG + 1 corresponds to the slack bus. The objective function (6.3) has the property of 

setting as many as possible terms (Pe - PeO), e = 1, ... , nL, to zero at the solution. This 

corresponds to selecting a possibly small subset of loads to be shed under emergency 

conditions from the set of all loads being candidates for shedding. The set of 

optimization variables usually restricted only to control variables in optimal power 

flow problems, IV gland Pg = g = nL + 1, ... , nL + nG, is here extended with the real load 

powers Pe, e= 1, ... , nL. In emergencies the operator may augment the decision vector 

with certain loa ds whose values can then be adjusted downwards. The objective (6.3) 
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simulates that process, which is basically a process of designing the real load powers 

(and the generator voltage magnitudes together with the generator real powers) to 

satisfy the security constraints. 

The real and reactive loads are not independent; one cannot shed real loads 

without curtailing reactive loads. It is assumed in this approach, as well as in Chan 

and Schweppe (1979), that the power factor remains fixed after a portion of the load is 

shedded. 

The minimization of (6.3) is subjected to (6 .1) and (6.2), where in (6. 1) it is 

assumed that the power network is represented by a steady-state a.c. power flow 

model in which the power flow equations are obtained by equating the power injected 

into each node with the power removed from the node and recognizing that under 

steady-state conditions the network can be represented by an admittance matrix 

(Talukdar and Wu 1981). In our implementation of the method proposed the fast 

decoupled load flow technique was used. 

Security constraints (6.2) in terms of the power network variables form six 

groups of constraints , both linear and nonlinear w.r.t. optimization variables chosen: 

1) load real power constraints (linear) 

P~ 5 Pe 5 0 f = 1, 2, ... , nL , (6.4) 

2) load voltage magnitude constraints (nonlinear) 

IV elmin 5 IV el 5 IVelmax, e = 1, 2, ... , nL, (6.5) 

3) voltage angle constraints (nonlinear) 

8min < 0 < 0max , _ l 2 + 
. _ . _ . , 1 - , , ... , nL nG , 
l l l 

(6.6) 

4) generator real power constraints (linear) 

(6.7a) 

pmin 5 p 5 pmax 
n n n ' 

(6.7b) 
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5) generator reactive power constraints (nonlinear) 

Qmin $ Q $ Qma.x, g = nL + 1, ... , n' 
g g g 

(6.8) 

6) generator voltage magnitude constraints (linear) 

IVJmin$1VJ$1VJma.x, g=nL +1, .. . ,nL +nG. (6.9) 

Transmission line loading limits can be current-magnitude constraints due 

to thermal considerations or electrical-angle (difference in voltage angles across a 

line) constraints due to stability considerations. In this formulation by appropriately 

choosing oimin and oimax in (6.6) the stability limits in terms of 8ij (8ij = Oi - Oj) can be 

accommodated as well as the current-magnitude constraints which can be converted 

into the form 

_ emax $ 8 $ emax 
ij ij ij ' 

(6 .10) 

as shown in Chan and Yip (1979) . 

6.2.2 Gradients of the Objective Function and Constraints 

The optimization method implemented in the form of a Fortran package 

(Bandier and Zuberek 1982b) requires first-order derivatives of the objective function 

and the constraints to be available. Since the voltage magnitudes IV gl, real generator 

powers Pg, g = nL + 1, ... , nL +nG, and real load powers Pe, e= l, ... , nL, are assumed to 

be optimization variables the gradient of the objective function (6.3) and the gradients 

of the constraints (6.4), (6.7a) and (6.9) can be easily found . To find the gradients of 

the constraints (6.5), (6.6), (6.7b) and (6.8) the Tellegen theorem method was used 

(Bandier and El-Kady 1980a, 1980b) and an implementation in the form of the TTMl 

package (Bandier, El-Kady and Wojciechowski 1983). 
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6.3 REMARKS ON THE IMPLEMENTATION OF THE FAST DECOUPLED 

METHOD 

The implementation (Bandier and Zuberek 1982c) of the fast decoupled 

load flow technique, incorporated in the TTM 1 package, basically follows the method 

of Stott and Alsac, and differs only in a more flexible iteration scheme in which the 

order of successive P-8 and Q-V iterations is not fixed but depends on the relationship 

between the accuracies of P-8 and Q-V iterations. Let e0 be the accuracy of the last P-8 

iteration, and ev be the accuracy of the last Q-V iteration. If, after the kth iteration 

eo 2>:: 2 ev 

the (k + l)th iteration is the P-8 one. If 

ev 2>:: 2 eo 

the (k + l)th iteration is the Q-V one . Otherwise, the basic (18, 1 V) is followed. The 

implemented scheme tends to a void large differences between the two accuracies and 

over-converging of the one of the two systems of equations implied by the method 

which slows down the overall convergence rate (Stott and Alsac 197 4) . 

6.4 NUMERICAL RESULTS: 6-BUS AND 26-BUS SYSTEMS 

6 Bus System 

The method presented has been tested on a 6-bus sample power system 

shown in Fig. 6.1. The required data is given in Table 6.1. Powers injected into buses 

are shown. Contingency in the form of the loss of 50% of generation capacity at bus 5 

is considered. Upper and lower bounds on network variables in terms of the base case 

solution are given in Table 6.2. The results of optimization showing the variables at 

the starting point and at the solution are summarized in Table 6.3. It can be seen that 

the objective function (6.3) selected only one load to be shed (out of three), namely, P 1. 
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--.--bus 3 

Fig. 6.1 6-bus power system. 
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TABLE 6.la . 

BUS DATA FOR THE 6-BUS POWER SYSTEM 

Bus Type P· l 

(pu) 

load - 2.40 0 

load - 2.40 0 

load - 1.60 - 0.40 

generator - 0.30 

generator 1.25 

slack 

TABLE 6.lb 

LINE DATA FOR THE 6-BUS POWER SYSTEM 

Terminal 
Buses 

1,4 

1,5 

2,3 

2,4 

2,5 

2,6 

3,4 

3,6 

Resistance 
Rt (pu) 

0.05 

0.025 

0.10 

0.10 

0.05 

0.01875 

0.15 

0.0375 

Reactance 
Xt (pu) 

0.20 

0.10 

0.40 

0.40 

0.20 

0.075 

0.60 

0.15 

1.02 

1.04 

1.04 

Number 
of Lines 

1 

2 

1 

1 

1 

4 

1 

2 

L -

L -

L -

L -

L -

L 0.0 
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TABLE 6.2 

UPPER AND LOWER BOUNDS ON NETWORK VARIABLES 

FOR THE 6-BUS POWER SYSTEM 

Variable Lower Bound Upper Bound 

IV el 0.93 IVelO l.071Vel0 

oi 0.9 oio 1.1 oiO 

Pg 0.85 PgO 1.3 PgO 

Qg 0.85 QgO 1.3 QgO 

IVgl 0.85 IVglO 1.15IVglo 

IVelO, oio, PgO, QgO and IVglO denote nominal values (at the base-case solution) except 

for the power injected at mode 5, for which P50 = 0.625 (taking into account the forced 

outage of 50% of generating capacity) . 
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TABLE 6.3 

RESULTS OF RUNNING THE LOAD SHEDDING PROGRAM 

FOR THE 6-BUS POWER SYSTEM 

Starting Point Solution 

Variable 

P1 - 2.40 -2.07225 

P2 - 2.40 -2.40000 

P3 - 1.60 -1. 60000 

P4 -0.30 - 0.25500 

Ps 0.625 0.704375 

IV41 1.02 1.040629 

IVsl 1.04 1.037985 

Objective Function 0.0 0.327745 

No. of Function 
Evaluations 20 

Execution Time 
on Cyber 170/815 4.5 
(in seconds) 
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The other two, P2 and P3 are exactly the same as at the starting point. The objective 

function value at the solution is exactly equal to the amount of load no. 1 to be 

curtailed. The changes in values of P 4 and Ps reflect the fact that we allowed up to 

30% incrase in real generation at buses 4 and 5. It can be observed also that the 30% 

reserve has not been utilized in full. This can be explained by the fact that other 

constraints have limited the use of full reserve at buses 4 and 5. 

26-Bus System 

The method presented has also been tested on a 26-bus power system shown 

in Fig. 6.2. The required data for the system is given in Tables 6.4, 6.5 and 6.6. 

Contingency in the form of loss of generation capacity at bus 19 from 1.45 to 1.00 is 

considered. Upper and lower bounds on network variables in terms of the base case 

solution are the same as those given in Table 6.2 for the 6-bus system with the 

exception of P19 for which P190 is taken as 1.00 (taking the contingency into account). 

The results of optimization showing all variables at the starting point and at the 

sol ution are summarized in Table 6.7. From the results it can be seen that again only 

one load (P6) out of seventeen has been selected for shedding, assuming contingency at 

bus 19. All the other loads have not been affected. The objective function at the 

solution is exactly equal to the amount of load at bus 6 to be curtailed. 



136 

13 2 18 
26 

12 

16 
22 

6 

Fig. 6.2 26-bus power system. 
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TABLE 6.4 

BUS DATA FOR THE 26-BUS POWER SYSTEM 

" 

Injected Power Bus Voltage 

Bus 

Pm Qm IV ml om 

1 - 0.82 -0.21 
2 0.01 0.0 

3 -0 .57 - 0.17 
4 - 0.48 - 0.21 

5 - 0.43 -0.11 

6 - 0.40 - 0.10 

7 - 1.11 -0.27 

8 - 0.23 -0.06 

9 - 0.67 - 0.21 
10 - 1.02 -0.27 
11 -0.43 - 0.14 

12 -0.43 - 0.12 
13 0.01 0.0 
14 0.01 0.0 

15 0.01 0.0 
16 - 1.31 - 0.30 
17 -0.03 - 0.01 

18 2.80 1.07 

19 1.45 1.05 
20 2.80 1.00 

21 1.10 1.02 

22 - 0.56 0.89 

23 - 0.04 1.00 

24 - 0.05 1.00 

25 0.63 1.00 

26 0.0 1.01 0.0 
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TABLE 6.5 

LINE DATA FOR THE 26-BUS POWER SYSTEM 

Terminal Resistance Reactance 1/2 Shunt 
Line Buses Rt (pu) Xt (pu) Susceptance 

1 13,26 0.0 0.0131 0.0 
2 26,16 0.0 0.0392 0.0 
3 16,23 0.0 0.4320 0.0 
4 23,26 0.0 0.3140 0.0 
5 2,10 0.0 0.0150 0.0 
6 9,10 0.1494 0.3392 0.4120 
7 9,12 0.0658 0.1494 0.0182 
8 12,26 0.0533 0.1210 0.0147 
9 9,14 0.0618 0.2397 0.0319 

10 11,14 0.0676 0.2620 0.0349 
11 19,26 0.0610 0.2521 0.0295 
12 6,26 0.0513 0.1986 0.0265 
13 6,19 0.0129 0.0532 0.0074 
14 7,19 0.0906 0.3742 0.0437 
15 6,7 0.0921 0.3569 0.0475 
16 11,22 0.0513 0.2118 0.0248 
17 8,11 0.0865 0.3355 0.0447 
18 17,22 0.0281 0.1869 0.0237 
19 8,21 0.0735 0.2847 0.0379 
20 17,21 0.0459 0.3055 0.0387 
21 1,4 0.0619 0.2401 0.0319 
22 4,21 0.0610 0.2365 0.0315 
23 20,21 0.0 0.0305 0.0 
24 15,1 0.0 0.0147 0.0 
25 2,13 0.0086 0.0707 0.3017 
26 1,7 0.0199 0.0785 0.0404 
27 15,20 0.0107 0.0617 0.4471 
28 2,18 0.0074 0.0608 0.2593 
29 1,3 0.0 0.0392 0.0 
30 24,3 0.0 0.1450 0.0 
31 5,21 0.0 0.1750 0.0 
32 5,25 0.0 0.1540 0.0 
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TABLE 6.6 

TRANSFORMER TAPS FOR THE 26-BUS POWER SYSTEM 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Terminal 
Buses 

13,26 

20,21 

24,3 

26,16 

15,1 

5,21 

2,10 

1,3 

5,25 

Real Imaginary 

1.03 0.0 

0.97 0.0 

0.98 0.0 

0.96 0.0 

0.89 0.0 

0.99 0.0 

1.03 0.0 

0.98 0.0 

1.03 0.0 
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TABLE 6.7 

RESULTS OF RUNNING THE LOAD SHEDDING PROGRAM 

FOR THE 26-BUS POWER SYSTEM 

Starting Point Solution 

Variable 
P1 - 0.82 -0.82000 
P2 - 0.01 -0.01000 
P3 - 0.57 -0.57000 
P4 - 0.48 -0.48000 
Ps -0.43 - 0.43000 
p6 - 0.40 - 0.155187 
P7 - 1.11 - 1.11 
Pg -0.23 - 0.23000 
P9 - 0.67 -0.67000 
Pio - 1.02 -1.02000 
Pu - 0.43 -0.43000 
P12 - 0.43 -0.43000 
P13 - 0.01 -0.01000 
P14 - 0.01 - 0.01000 
P15 - 0.01 -0.01000 
p16 - 1.31 -1.31000 
P17 - 0.03 - 0.03000 

Pis 2.80 2.86677 
P19 1.00 1.15000 
P20 2.80 2.83164 
P21 1.10 1.12126 
P22 -0.56 - 0.58739 
P23 - 0.04 - 0.04600 
P24 -0.05 - 0.04436 
P25 0.63 0.64753 

IV1sl 1.07 1.06814 
jV19j 1.05 1.05055 
IV2ol 1.00 1.00684 
IV21I 1.02 1.02583 
IV22I 0.89 0.88974 

IV23I 1.00 0.99768 
IV24I 1.00 1.00721 
IV2sl 1.00 1.00635 

Objective Function 0.0 0.24481 

Number of Function 
Evaluations 9 

Execution Time on 
Cyber 170/815 (in seconds) 79.5 
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6.5 CONCLUSIONS 

In this chapter the load shedding and generation rescheduling problem is 

formulated as a nonlinear optimization problem. The problem of selecting a possibly 

small subset of loads to be shed is addressed directly by proposing the e 1 type of the 

objective function for the problem. The Han-Powell algorithm for general nonlinear 

programming problem is used. To preserve the nonlinearity of the problem 

(appearing in the security constraints considered) the exact first-order sensitivities 

based on the Tellegen theorem are employed. Numerical results for 6-bus and 26-bus 

systems show that the objective function proposed selects small number of loads to be 

shed (one out of three for a 6-bus system and one out of seventeen for a 26-bus system) 

from the set of all loads being candidates for shedding. 

The Han-Powell algorithm has proved to be fast and robust for small 

optimum power flow problems (up to 100 buses) (Giras and Talukdar 1981) . For large 

problems a class of decompositions has been developed (Talukdar, Giras and Kalyan 

1983) which can be applied to the load shedding problem. 



7 
OPTIMAL DESIGN OF MI CROW A VE MULTIPLEXING NETWORKS 

7.1 INTRODUCTION 

Practical design and manufacture of contiguous-band multiplexers 

consisting of multi-cavity filters distributed along a waveguide manifold has been a 

problem of significant interest over the past ten years (Atia 197 4; Chen, Assa! and 

Mahle 1976; Chen 1983). Recently, a general multiplexer design procedure using an 

extension of the normal least squares method has been described (Egri, Williams and 

Atia 1983). 

In this chapter, we formulate the design of a contiguous-band multiplexer 

structure as a centering problem using a recently developed minimax algorithm of 

Hald and Madsen (Hald and Madsen 1981). All design parameters of interest, e.g. , 

waveguide spacings, input-output and filter coupling parameters, can be directly 

optimized. A wide range of possible multiplexer optimization problems can be 

formulated and solved by appropriately defining specifications on common port return 

loss and individual channel insertion loss functions. The minimax error functions are 

created using those specifications, simulated exact multiplexer responses and 

weighting factors . A typical structure under consideration is shown in Fig. 7 .1. 

The multiplexer optimization procedure to be described in this chapter 

exploits exact network sensitivities. Evaluation of the exact sensitivities for the 

multiplexer structure is based on the exact sensitivity analysis of individual filters 

and a direct application of the method of forward and reverse analyses for cascaded 

structures developed by Bandier, Rizk and Abdel-Malek (1978). The details of the 
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simulation and sensitivity analysis aspect of the problem have been described in 

Bandier, Chen, Daijavad and Kellermann (1984), Bandier, Daijavad and Zhang 

(1985), and Bandler, Chen and Daijavad (1985). 

7.2 FORMULATION OF THE PROBLEM 

The objective function to be minimized is given by 

F(q>) = max f (q>), 
J 

jEJ 

(7.1) 

where <t> = <t>O is a vector of design parameters (e.g., section or spacing lengths, 

channel input and output couplings and filter coupling parameters) and 

J ~{1, 2, .. . , m} is an index set. The minimax functions fj(<t>),j E J, can be of the form 

(7.2) 

(7.3) 

2 2 2 wu(w.)(F (<t>, w) - Su(w.)), 
l l l 

(7.4) 

2 2 2 - wL(w)(F (q>, w.) - SL(w.)), 
l l l 

(7.5) 

where Fkl(<l>, Wi) is the insertion loss for the kth channel at the ith frequency, 

F2(<t>, Wi) is the return loss at the common port at the ith frequency, SUkl(wi) (SLkl(wi)) 

is the upper (lower) specification on insertion loss of the kth channel at the ith 

frequency, Su2(wi) (SL 2(wi)) is the upper (lower) specification on return loss at the ith 

frequency , and wu/, WLk 1,wu 2, WL 2 are the arbitrary user-chosen nonnegative 

weighting factors . 

A typical example of specifications on return loss and insertion loss for a 

three-channel multiplexer is shown in Fig. 7.2. 
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Fig. 7.2 Illustration of specifications for a three-channel multiplexer. 
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7.3 UNTERMINATED FILTER SIMULATION AND SENSITIVITY 

ANALYSIS 

The model of an unterminated multi-cavity filter has been given by Atia 

and Williams (1972) (see Section 4.8.2, equations (4.55-4.57) and Fig. 4.4). 

We reduce the system to a two-port (see Fig. 7.3) given by 

(7.6) 

where y is the s.c . admittance matrix of the filter, including input l:n1 and output n2:l 

ideal transformers (see Fig. 7.4). Matrix y and its sensitivities w.r.t. all variables, 

including frequency, can be obtained by solving the systems 

Zp = e1 and Zq = en, (7.7) 

where e1 £ [1 0 ... O]T and en£ [O ... 0 l]T are n-dimensional unit excitation vectors . 

Note that q can be found with minimal extra effort after factorization of Z for the 

solution of p. The following formulas for the evaluation of y and its sensitivities are 

readily derived (Bandier, Chen, Daijavad and Kellermann 1984) 

where 

y 

ay 
= - jc 

aMek 

ay 

aw 

2 
[ 2n1PePk 

nl n/peqk + pkqe) 

nl n2(Pe:k + pkqe) l 
2 n2qeqk 

c 

as 
-J -

aw 

if {':;t: k' 

ift'=k, 

(7.8) 

(7.9) 

(7 .10) 
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7.4 COMPUTER IMPLEMENTATION 

0 
(7 .11) 

A Fortran package has been developed for multiplexer simulation, 

sensitivity analysis and optimization. Functional blocks of the package are shown in 

Fig. 7.5 . This package has been designed to reflect the requirements of ComDev Ltd. 

of Cambridge, Ontario, Canada. It has been tested in close cooperation with engineers 

directly involved in multiplexer design and postproduction tuning. 

Options of the Package 

The required mode of operation of the package is selected by the user by 

setting an indicator as follows: 

l - if only multiplexer simulation is required; 

2 - . if multiplexer sensitivity analysis is required (implies simulation); 

3 - if multiplexer optimization is required (implies both simulation and 

sensitivity analysis). 

Options of the Optimization Mode 

If the multiplexer optimization option is selected three modes of 

optimization are allowed for, namely, only return loss optimization (suggested by 

Chen (1983)), only insertion loss optimization, return loss and insertion loss 

optimization, all at user-defined sets of frequency points. A suitable and sophisticated 

coding scheme has been developed which creates a consecutively numbered set of 
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Fig. 7.5 Functional blocks of the computer package for multiplexer simulation, 

sensitivity analysis and optimization. 
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minimax functions depending on whether we have only lower (upper) specifications, 

both or no specifications on a function of interest at a certain frequency point. 

Options Related to the Selection of Optimization Variables 

The coding scheme developed and employed in the package allows also a 

very flexible choice of optimization variables. In general, all parameters are 

candidates for optimization variables, however, with very little effort , the user can 

declare any parameters to be optimization variables. 

Options Related to the Microwave Model ofa Multiplexer 

The package can exploit three commonly used practical models of the 

multiplexer, depending on whether the junctions are ideal or nonideal (junction 

susceptance is included), whether the filters are lossless or lossy (dissipation is 

included), and whether the filters are modelled as dispersive or non-dispersive. (The 

waveguide manifold is always assumed dispersive.) 

7.5 5-CHANNEL, 11 GHz MULTIPLEXER DESIGN USING MINIMAX 

OPTIMIZATION 

The procedure is illustrated by designing an 11 GHz, 5-channel multiplexer 

having the center frequencies and bandwidths (similar to those in Egri, Williams and 

Atia 1983) given in Table 7.1. 
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TABLE7.l 

5-CHANNEL MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS 

Channel 

1 

2 

3 

4 

5 

Center Frequency 
(MHz) 

10992.5 

11075.0 

11155 .0 

11495.0 

11618.5 

Bandwidth 
(MHz) 

81 

76 

76 

76 

154 
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Suppose we want to design this multiplexer such that certain specifications 

on the common port return loss and individual channel insertion loss functions are 

satisfied. A lower specification of 20 dB on return loss over the passbands of a ll five 

channels should be satisfied. We want also to control return loss between channels 1 

and 2, 2 and 3, 4 and 5 in a similar way . We impose also additional specifications on 

insertion loss for all channels, i.e ., we want the insertio n loss in the transition bands 

not to drop below 20 dB. We start the design process with five identical six pole, 

pseudo-elliptic function filters. Starting values of the coupling coefficients for the 

filters are given in the following matrix (Chen 1983): 

0 0.62575 0 0 0 0 

0.62575 0 0.57615 0 0 0 

0 0.57615 0 0.32348 0 - 0.74957 

M = 0 0 0.32348 0 1.04102 0 (7.12) 

0 0 0 1.04102 0 1.04239 

0 0 - 0.74957 0 1.04239 0 

The initial spacing lengths are set equal to ,\gk/2 (half the wavelength 

corresponding to the kth center frequency). The filters a re assumed lossy and 

dispersive. Waveguide junctions are assumed nonideal. 

Fig. 7.6 shows the responses of the multiplexer at the start of the 

optimization process. As we see the specifications on the common port return loss are 

seriously violated. 

The optimization process is performed in several steps. First we select only 

non-zero couplings, input/output transformer ratios and filter spacings as 

optimization variables. This gives a total of 45 optimization variables. The error 
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functions resulting from the multiplexer responses and specifications are created at 

51 nonuniformly spaced frequency points. An improved design is obtained after 30 

function evaluations (230s on the Cyber 170/815). The responses corresponding to the 

first step of the optimization process are shown in Fig. 7.7 . 

In order to completely satisfy the design specifications we perform a second 

step of optimization in which we release additional optimization variables, i.e., cavity 

resonances. This gives a total of 75 nonlinear optimization variables. Using the same 

frequency points as in step 1 and results of the first optimization as a starting point we 

continue the optimization process . After 30 additional function evaluations (and 470s 

of CPU time on the Cyber 170/815), the design specifications are satisfied and the 

optimized responses of the 5-channel multiplexer are shown in Fig. 7.8. To improve 

the return loss response of the multiplexer, the third step of optimization is performed 

in which a search technique for maxima of the response is employed. This gives 66 

minimax functions and the same number of variables as previously. After 25 

additional function evaluations (and 360s of CPU time on the Cyber 170/815) we 

obtain the final optimized responses as shown in Fig. 7.9. 

In the approach presented the emphasis is on achieving a maximally 

effective set of early iterations of optimization using a subset of all possible 

optimization variables. This subset should correspond to "dominant" variables of the 

problem. Initial selection of the variables can be facilitated by the full knowledge and 

experience of the designer and by an initial sensitivity analysis at selected frequency 

points. 
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7.6 12-CHANNEL, 12 GHz MULTIPLEXER DESIGN USING f1 

OPTIMIZATION 

A major task in designing a multiplexer is to determine the location of the 

channel filters along the waveguide manifold (Chen 1983) . This is very important for 

designs using the common port return loss as the only optimization crite r ion. A 

typical value of lower specification on return loss over the passba nds of all 

multiplexer channels is 20 dB. The error functions fj(<t>) for this type of problem are of 

the form (7.5). 

If we perform a minimax optimization based on these error functions and at 

the solution the minimax objective function value is negative then the goal has been 

achieved. In many cases, however, using the filter spacings as the only optimization 

variables may not be sufficient to satisfy all specifications and minimax optimization 

gives results corresponding to the situation where the specification violations are 

distributed over all multiplexer channels . In that case the use of the one-sided f1 

optimization of the same error functions may lead to more desirable results where the 

violations occur only over a few multiplexer channels. This process of identifying 

"bad channels" has two very important consequences. First, the results indicate in 

which channels the additional variables have to be released to improve locally (in the 

frequency domain) the performance of the mul tiplexer and second, it gives very good 

starting values of the waveguide spacings to be used in the subsequent minimax 

optimization. The idea presented is illustrated by designing a 12 GHz , 12-channel 

multiplexer without dummy channels. The 12-channel contiguous band multiplexer 

has a channel frequency separation of 40 MHz and a usable bandwidth of 39 MHz with 

the center frequency of channel 112 180.0 MHz. 
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Suppose we want to design this multiplexer such that a lower specification 

of 20 dB on the common port return loss over the passbands of all 12 channels should 

be satisfied. We start the design process with twelve identical 6th order filters with 

the coupling coefficients given in the following matrix (Tong and Smith 1984): 

0 0.594 0 0 0 0 

0.594 0 0 .535 0 0 0 

0 0.535 0 
M= 

0.425 0 - 0.400 (7.13) 

0 0 0.425 0 0.834 0 

0 0 0 0.834 0 0.763 

0 0 - 0.400 0 0.763 0 

Initially we select the spacing lengths along the waveguide manifold as the 

only optimization variables with starting values set equal to Agk/2 (half the 

wavelength corresponding to the kth center frequency). For the kth channel the 

waveguide spacing is measured along the manifold from the adjacent (k-l)th channel. 

For the first channel the spacing is the distance from the short circuit. The filters are 

assumed lossy and dispersive. Waveguide junctions are assumed nonideal. 

Fig. 7.10 shows the return loss response of the multiplexer at the start of 

the optimization process. The specification on the common port return loss is 

seriously violated, especially in the lower frequencies range (corresponding to 

channels 8-12). 

The filter spacings are the dominant variables of the problem. This is based 

on the initial sensitivity analysis of the common port return loss function w.r. t. all 

variables at se lected frequency points. 
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We perform the one-sided e 1 optimization which is defined in the following 

way 

where 

m 

minimize L I( (<l>)I, 
<}> i = 1 

{ 

f.(<}>) 
+ ti I 

f. = 
I O 

if f.(<}>) ~ 0 
l 

if f(<}>) < 0 
l 

The functions fi(<l>) are the original error functions defined in (7.5). 

(7.14) 

(7.15) 

We define also the gradients of the functions f/(<l>) in the following way 

+ 
af.(<}>) 

I ti ---
a<}> 

afi(<l>) 

{a$ if f.(<}>) ~ 0 
l (7 .16) 

O if f.(<}>) < 0 
I 

The results of the €1 optimization defined above are shown in Fig. 7.11. The violations 

of the 20 dB specification are most serious in the frequency range corresponding to 

channels 1-2 and 8-12. This motivates us to release additional optimization variables 

in the filters corresponding to these channels. As additional optimization variables 

we release the input-output transformer ratios, cavity resonant frequencies as well as 

intercavity couplings. From that point minimax optimization is employed using the 

€1 optimized spacings as the starting values for the spacings. The final optimized 

return loss of the 12 channel multiplexer is shown in Fig. 7.12. The problem involves 

60 nonlinear design variables. 

7.7 CONCLUDING REMARKS 

A powerful and efficient optimization procedure for contiguous band 

multiplexers has been presented. It employs a fast and robust gradient-based 

minimax algorithm. The multiplexer responses and their first-order sensitivities are 
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calculated efficiently and exactly. The procedure developed allows flexibility in 

selecting optimization variables and multiplexer models. The important feature is 

the possibility of including linear equality and inequality constraints on optimization 

variables. To our knowledge, the 5- and 12-channel multiplexer designs are the first 

successful attempts to use gradient-based optimization for multiplexer design as well 

as being the largest nonlinear optimization process ever demonstrated on microwave 

circuit design for a reasonable computational cost. 

A formulation using the f1 norm for the initial stage of multiplexer design 

has been presented and illustrated by a 12-channel, 12 GHz multiplexer problem. The 

one-sided f1 optimization sets to zero as many error functions as possible, and this 

results in identifying channels of the multiplexer where the specification violations 

are most serious. 



8 
CONCLUSIONS 

This thesis has considered a number of important problems associated with 

computer-aided design and computer-aided testing of engineering systems. These 

problems include design centering, tolerancing and tuning, worst-case selection, 

tunable parameter selection, fault location and model parameter identification from 

measurements. 

Many of the engineering system problems discussed in this thesis have 

been formulated as optimization problems. The formulations exploit characteristic 

features of the minimax and e1 norms. 

The minimax objective function has been well established in the design of 

circuits and systems, especially in design centering and tolerance optimization. Two 

new applications have been presented in this thesis . One is an algorithm for the fixed 

tolerance problem embodying worst-case search and selection of sample points. 

Linearly constrained optimization is used to determine actual worst cases during the 

optimization of the nominal design subject to fixed tolerances. 

Another application is an algorithm for minimizing the cardinality of a set 

subject to nonlinear, nondifferentiable constraints. It is a combinatorial problem in 

which an unconstrained minimax optimization of a set of error functions is used to 

select candidates for deleting from the original set of points. The algorithm has been 

used for solving a practical mechanical engineering problem which originated from 

aligning mechanical designs. The approach presented in Chapter 5 should prove 

useful in many other areas where problems of a similar nature may exist. 
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Unlike the minimax norm, the {!i norm has not been given its proper place 

in computer-aided design and computer-aided testing of circuits and systems. This 

thesis, therefore, has examined some aspects of t'1 optimization and its relevance to 

tunable parameter selection at the design stage, fault location in analog systems and 

model parameter identification from measurements. 

Necessary conditions for optimality of the nonlinear t'1 problem with 

nonlinear constraints indicate that zeros of the nonlinear functions play an important 

role in the characteristics of the t'1 objective function. Active constraints play the 

same role as zero functions. This fact has been used in fault isolation techniques for 

linear analog circuits. The t'1 norm is used to isolate the most likely faulty elements. 

In Chapter 4, a new formulation for fault isolation in analog circuits based on an exact 

penalty function has been presented. 

Another important application of the t'1 norm is the selection of tunable 

parameters in the functional approach to post-production tuning. Two new 

formulations for the tuning problem have been presented based on the classification of 

the tuning problems into tuning with the fixed set of tunable parameters and tuning 

with the variable set of tunable parameters . A mixed programming formulation 

given in Chapter 4 ensures that the solution gives the minimum number of tunable 

parameters . The importance of selecting tuning parameters in real life engineering 

systems has been demonstrated in Chapter 6 where the load shedding and generation 

rescheduling problem in power systems is formulated as an optimization problem 

with the t'1 type of objective function . Although the number of applications of the t'1 

norm to circuits and systems problems is increasing, it is felt that the full potential of 

the t'1 norm in solving engineering system problems has not been realized and 

requires further research. 
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All the formulations in this thesis are supported by fast and efficient 

algorithms for minimax and f1 optimization originated by Hald and Madsen. The 

results presented in Chapter 3 (comparison of minimax algorithms on a three- section 

transmission-line transformer) and in Hald and Madsen (1985) indicate that both 

algorithms may be the best of their class currently available. The robustness of the 

algorithms has been proved by solving practical engineering design problems of 

significant size. An optimization procedure for the design of contiguous and 

noncontiguous band microwave multiplexers, described in Chapter 7, allows us to 

solve problems involving up to 75 nonlinear design variables and as many as 100 

nonlinear error functions. An important factor in the success of both algorithms in 

solving difficult engineering problems is the fact that the algorithms recognize 

singularities in the problems defined and treat them efficiently. As was shown in 

Chapter 3 on a two-section transmission-line transformer, those singularities are not 

only abstract concepts, but are inherent in many circuits and systems design 

problems. 

Many of the subproblems associated with overall problems in different 

engineering disciplines are of a similar nature and sufficient complexity to motivate 

the development of a conceptual framework within which it would be possible to 

integrate and apply the results of computer-aided engineering system research. The 

aim would be to provide the means of integrating the design process (centering, 

tolerancing and tuning) with the post-production process (parameter identification, 

fault location, post-production tuning). Such a framework would be an extension of 

the concepts and definitions used in DCTT to include fault location, post-production 

tuning and model parameter identification. 
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In order to integrate · the classical design problem and, for example, the 

model parameter identification problem, we could extend the concept of specification 

to include a measured response of a network or system. In the design problem, the 

specifications which a manufactured design must meet are known exactly. This is not 

the case with the specifications for the identification problem due to the presence of 

measurement errors or uncertainties in observing the particular response. The 

concept of performance function in both problems is exactly the same . This is an 

appropriate model which depends, in general, nonlinearly on a set of parameters. The 

difference between the two problems lies basically in the nature of the specifications. 

It should also be noted that for the identification problem, we usually consider the 

single point specification while in the design problem we usually have lower and/or 

upper specifications. Single point specifications can al ways be replaced by two 

specifications, lower and upper, of equal value. Thus we can think of a general design 

problem formulated as an optimization problem with the objective being the norm of 

the error functions resulting from specifications on performance functions of interest. 

The particular norm to be used depends on the nature of specifications. 

A number of other problems are also worth further research and 

development. 

(a) In the present version of the algorithm for the fixed tolerance problem, 

worst-case search is performed for each iteration of the optimization w.r.t. 

nominal values. It was observed, however, that close to a solution, worst 

cases selected do not change from iteration to iteration. It would be 

worthwhile to develop a criterion allowing us to test whether the worst-case 

corresponding to a particular function has changed or not. Such a criterion 
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would be based on the signs of gradients and would alleviate the worst-case 

search for each iteration. 

(b) In Chapter 4, a mixed programming formulation for the selection of tunable 

parameters at the design stage is proposed. The formulation ensures that a 

minimum number of parameters for tuning is selected. It would be useful 

to investigate possible algorithms for solving this type of mixed 

programming problem. 

(c) A natural extension of the approach to the best alignment is one which 

considers alignment problems in three dimensions. This would be very 

useful from the practical point of view. 

(d) In the present implementation of the approach to load shedding and 

generation rescheduling in power systems, all arrays are assumed to be 

dense. Since the problem is structurally very sparse, implementations 

taking sparsity directly into account would prove very useful for solving 

problems of significant size. 



APPENDIX A 

DESCRIPTION OF THE HALD AND MADSEN MINIMAX ALGORITHM 

The algorithm is a combination of two methods denoted Method I and 

Method 2. Method I is intended to be used far away from a solution whereas Method 2 

is a local method. We first describe these two methods . 

Method I 

This is essentially the algorithm of Madsen (1975). At the kth step a 

feasible approximation Xk of a solution of (3 .9) and a local bound i\k are given. In 

order to find a better estimate of a solution the following linearized problem is solved: 

subject to 

minimize 
- t,,. ' T 
F (xk, h) = max {fj (xk) + fj (xk) h} 

h 

T 
a. (xk + h) + b. = 0 , 

l 1 

aT (xk + h) + b. 2: 0 , 
l l 

J 

i = 1, ... , e , eq 

i = ce + o, ... , e . 
eq 

(A.I) 

The solu tion of (A.1), denoted hk, is found by linear programming. Notice 

that Xk + hk is feasible. The next iterate is Xk + hk provided this point is better than 

Xk in the sense ofF, i.e ., ifF(xk+hk) < F(xk). Otherwise Xk+l = xk. In Fig. A.I, an 

example with one variable, two functions and no constraints (€ = 0) is shown. F(x) is 

the kinked bold-faced curve. At Xk linear approximations of the two functions f1 and 

f2 are made and the so lution of (A.1) is hk which is found at the intersection of the two 

linear approximations . We assume that the local bound i\k is so large that it has no 
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F(x) 

F~ 

x 

An example with one variable and two functions illustrating a Method 
1 iteration of the algorithm. 



influence. The -new point is Xk+l 

minimum ofF. 
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Xk + hk which is seen to be close to a local 

The local bound Ak is introduced because the linear model (A.1) is a good 

approximation of(3.9) only in some neighbourhood ofxk. Therefore, it makes sense to 

consider only small values of II h II in connection with the linear model (A.1 ). The size of 

the bound is adjusted in every iteration based on a comparison between the decrease 

in the objective function F and the decrease predicted by the model (A.1). If the ratio 

between the two is small, 

F(xk) - F(xk + hk) ~ 0.25 [F(xk, 0) - F(xk,hk)l 

then the bound is decreased, Ak + 1 = Ak/4. Otherwise, if 

F(xk) - F(xk + hk) ~ 0.75 [F(xk,0)- F(xk,hk)l 

(A.2) 

(A.3) 

then Ak+l = 2Ak. If neither (A.2) nor (A.3) hold then we leave the bound unchanged, 

Ak+1=Ak. 

Experiments have shown that the algorithm is rather insensitive to small 

changes in the constants used in the updating of the bound. This method has safe 

global convergence properties (Madsen 1975) and if the solution is regular then the 

final rate of convergence is quadratic (Madsen and Schjaer-Jacobsen 1978). 

Method 2 

It is a local method. It is assumed that a point near a solution z is known, 

and that the active sets A(z) ~ { j I ~(z) = F(z) } and C(z) ~ { i I a?z +bi = 0 } are known. 

At a local minimum z of (3.9) the following necessary conditions hold (see, e.g., 

Hettich 1976), 
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~ A. ( (z) - ~ µ. a. = 0, 
L J J L 1 t 

jEA<z> iEC(z> 

2 A.-1=0, 
J 

jEA<zl (A.4) 

f (z) - f(z) = 0 , j E A(z) \ {iJ , 
Jo J 

T a. z +b.=O, iEC(z), 
l l 

where the multipliers Aj a nd µi are nonnegative and foEA(z) is fixed. Method 2 is an 

approximate Newton method for solving the nonlinear system (A.4) (in the variables 

(z,A.,µ)). Exact first derivatives are used but the matrix :E i\/((z) is approximated 

using a modified BFGS update. In this way an approximate Jacobian Jk is obtained 

at the estimate (xk,,\(kl, µ (k>) of the solution of(A.4). The next estimate is found by 

Jk [:::l ~ -R(xk, A (kl, µ<kl) 

~µ(kJ (A.5) 

( ,\(k + l)) (k + 1) )= ( ,\(k) (k)) + (~ ~,\(k) ~ (k)) 
xk + 1 ' ' µ xk ' ' µ xk ' ' µ 

where R(z,A.,µ) = 0 is the vector formulation of(A.4). 

We consider one iteration of Method 2. For simplicity, we use the notation 

x = Xk, ,\ = Ak, µ = µk, A = A(z) and C = C(z). In a Newton iteration for solving 

(A.4), we should use the Jacobian 

I,\{ E - F 
J J 

jEA 

0 0 ... 0 0 1 1 ... 1 0 0 ... 0 0 (A.6) 
R' (x,i\.,µ) 

GT 0 0 

FT 0 0 

where E has the columns fj'(x), j E A, F has the columns ai, i E C, and G has the 

columns fj
0
'(x) - t'j'(x), j E A\{io}. Only the upper left hand block involves more than 
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first derivatives. In Method 2, this block is approximated by an updating formula 

whereas the exact values are used in the other blocks ofR'. 

The Lagrangian function corresponding to (3.9) is 

m e 
L(x, A,µ)= """' ti.. f (x) - """' µ .[aT x + b.J, L JJ L 1 1 1 

(A.7) 

j=l i=l 

so the upper left hand block of (A.6) is Lxx"(x,.h.,µ) since Aj = 0 for j i A. 

This block is approximated by the BFGS formula with the modifications of 

Powell (1978) that keep the approximation positive definite. Thus the matrix Jk of 

(A.5) is 

E -F 

0 0 ... 0 0 11 ... 1 0 0 ... 0 0 
(A.8) 

0 0 

0 0 

where Bk is updated through 

(A.9) 

with 

S = Xk+l -X 

' ' y = L (xk 
1 

, A,µ) - L (x, .h., µ) 
x + x 

An iteration of Method 2 is now given by (A.8), (A.5), and (A.9) with 

' L (x, .h., µ) 
x 

R(x, A,µ)= 
L A. - 1 

J 
(A.10) 

e 

f 

where e has the components fj/x)-fj(x), j E A\{io} and f has the components a?x + bi, 

i EC. 
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The Combined Method 

The combined method is the algorithm which we use in this thesis. 

Initially, Method 1 is used and the active sets used in (A.4) are estimated. When a 

singular local minimum seems to be approached a switch to Method 2 is made. If the 

Method 2 iteration is unsuccessful Method 1 is used again . Several switches between 

the two methods may take place. When Method 1 is used we say that the iteration is 

in Stage 1, otherwise it is in Stage 2. A detailed description of the two stages follows. 

The Stage 1 Iteration 

We have a point Xk, a local bound Ak and a matrix Jk which should 

approximate the Jacobian of(A.4). 

1. Xk+l and Ak+l are found using Method 1, and approximations Ak+l and 

Ck+ 1 of the active sets at Xk + 1 are found via the active sets at the solution 

hk of the linear model problem (A.1). 

2. An estimate (A(k+l>,µ<k+l )) of the multipliers is found through a least 

squares solution of (A.4) with (xk + 1,Ak + 1,Ck + 1) inserted for (z,A(z),C(z)) . 

This estimate is used for finding a new Jacobian estimate J k + 1 by the 

BFGS update . 

3. A switch to Stage 2 is made if the following two conditions hold: 

(a) The active set estimates have been constant over v consecutive 

different Stage 1 iterates. 

(b) The components of..\(k + 1J and µ <k + 1) are nonnegative . 

The Stage 2 Iteration 

Xk, Ak, Jk and active set estimates Ak,Ck are given. 



177 

1. Find (xk+1,A<k+ll,µ<k+l J) and Jk+l using Method-2 with (Ak,Ck) inserted 

for (A(z), C(z)). 

2. Let Ak+ 1 = Ak, Ck+ 1 = Ck and Ak+ 1 = Ak. 

3. Switch to Stage 1 if one of the following conditions hold: 

(a) A function or constraint outside of Ak+ 1 or Ck+l is active at xk+ 1· 

(b) A component of .,\(k + 1) or µ (k + l J is negative. 

(c) II R (xk + 1,A<k + l l, µ (k + 1 l) II > 0.999 II R(xk,A<k),µ (k) II (see (A.5) for the 

definition ofR). 

This completes the description of the combined method. 

It has been shown (Hald and Madsen 1981) that the combined method can 

only converge to stationary points and that the final rate of convergence is quadratic 

on regular problems and superlinear on singular problems (provided that the 

Jacobian of(A.4) is regular). 



APPENDIX B 

CUBIC INTERPOLATION FORMULA 

As a well-known fact, a maximum of a continuous differentiable function 

e(w) is characterized bye'~ ae/aw = 0 and a2e/aw2 < 0. This implies a change in the 

sign of ae/aw and, in the neighbourhood of the maximum, ae/aw decreases as frequency 

increases . It follows that ifthere exist two points w1 < w2 such that 

at least one maximum of e (w) lies between w1 and w2. If w1 and w2 are close enough to 

exclude the existence of multiple maxima, the location of the detected maximum can 

be estimated by the cubic interpolation formula (Fletcher and Powell 
1
.1963) 

(w - Cu ) l x -y - e' ] 2 l w
2 

where 

and 

Cu max = Cu2 - -------- 

e -e + 2x 
wl w2 

e(w2) - e(w
1
) 

y = - e - e + 3 -----
wl w2 Cu2 - Cul 
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(8.1) 

(B.2) 

(B.3) 



APPENDIX C 

DESCRIPTION OF THE HALD AND MADSEN e1 ALGORITHM 

We now give a detailed description of the method which is a combination of 

Method 1 and Method 2. We first describe the two basic methods and next the 

combined method, including switching rules. 

Method 1 

This is a method providing global convergence . At the kth step a feasible 

approximation Xk to a solution of (4.1) and a local bound Ak are given. In order to find 

a better estimate the following linearized problem is solved: 

minimize 
h 

subject to 

T 
a. (xk + h) + b. = 0 , 

l l 

aAxk + h) + b. 2'.: 0 , 
l l 

i = 1, ... , e , 
eq 

i = (e + o, ... , e. 
eq 

(C .1) 

The solution of (C.1), hk, may be found by a standard linear programming routine . 

However, an implementation of the algorithm of Bartels, Conn and Sinclair (1978) is 

used, which is more efficient. Notice that (xk + hk) is feasible. 

The next iterate is (xk + hk) provided that this point is better than Xk in the 

sense ofF, i.e . , ifF(xk + hk) < F(xk). Otherwise Xk+ 1 = Xk. 

The local bound Ak is adjusted in every iteration based on comparison 

between the decrease in the nonlinear objective function and the decrease predicted 
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-
by the model F. If the ratio between the two is small, 

F(xk) - F(xk + hk) ~ 0.25[ F (xk, 0) - F (xk, hk)], 

then the bound is decreased: i\.k + 1 = A.k/4. Otherwise, if 

F(xk) - F(xk + hk) 2': 0.75[ F (xk' 0) - F (xk' hk)J, 

(C.2) 

(C 3) 

then i\.k + 1 = 2 i\.k. If neither (C .2) nor (C.3) hold then we leave the bound unchanged, 

Experiments have shown that the method is rather insensitive to small 

changes in the constants used in this updating procedure of the local bound. Notice 

that if the new point (xk + hk) is not accepted then the bound is decreased. 

Method 2 

This is a local method. It is assumed that a point near a solution x* is 

known and that the set of zero functions 

Z(x*) ~ {j I f.(x*) = 0 } 
J 

and the set of active constrain ts, 

A(x*) ti {ilaTx* + b. = O} 
l l 

are known. 

(C.4) 

(C.5) 

Method 2 is an approximate Newton method for solving the nonlinear 

system (C.9) (in the variables (x, o, µ)). Exact first derivatives are used but the 

matrix 

g"(x*) + 2 8. r" (x*) 
J J 

j EZ 

is approximated using a modified BFGS update. In this way an approximate Jacobian 

Jk is obtained at the estimate (xk, o(kl, µ (kl) of the solution of (C.9) . The next estimate 

is obtained by 
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(C.6) 

( 
11 (k+l) (k+l)) = ( 11(k) (k))+(t:,_ Al1 (k) A (k)

0

) xk+l'u ,µ xk,u ,µ xk,uu ,uµ 

where R is defined by (C 10). Notice that no line search is involved. 

The Combined Method 

The combined method is the algorithm which is used in this thesis. Method 

1 is intended to provide the global convergence and Method 2 is used to obtain fast 

local convergence. 

Initially, Method 1 is used and the sets (C.4) and (C.5) are estimated. When 

a local minimum seems to be approached a switch to Method 2 is made . If the Method 

2 iteration is unsuccessful then Method 1 is used again. Several switches between the 

two methods may take place. When Method 1 is used we say that the iteration is in 

Stage 1, otherwise it is in Stage 2. A detailed description of the two stages follows. 

The Stage 1 Iteration 

We have a point Xk, a local bound i\k and a matrix Jk which should 

approximate the Jacobian of(C.9). 

1. Xk + 1 and i\k + 1 are found using Method 1, and approximations Zk + 1 and 

Ak + 1 of the sets (C.4) and (C.5) are found via the zero and active sets at the 

solution hk of the linear model problem (C.1) . 

2. An estimate (o<k + lJ, µ <k+ ll) of the multipliers is found through a least 

squares solution of (C .9) with (xk + 1, Zk + 1, Ak + 1) inserted for (x, Z(x), 
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A(x)). This estimate is used for finding a new Jacobian estimate Jk+l by 

the BFGS method as described later in this appendix. 

3. A switch to Stage 2 is made if the following two conditions hold: 

(a) The estimates Zk + 1 and Ak + 1 have been constant over v 

consecutive different Stage 1 iterates (v~ 3). 

(b) The multiplier estimates are in the correct ranges, 

The Stage 2 Iteration 

We have an estimate (xk,o(kl, µ<kl), estimates Zk and Ak of (C.4) and (C .5), 

and a matrix Jk which should approximate the Jacobian of (C.9) . 

1. Find (xk+l, o<k+ l J, µ<k+ll) and Jk+l using Method 2 with (Zk,Ak) inserted 

for (Z(x*), A(x*)). 

3. Switch to Stage 1 if one of the following conditions holds: 

(a) A function fj with j e Zk has changed sign, or a constraint 

corresponding to an index i with i e Ak has become violated. 

(b) A component of o<k + U or of µ (k + 1) is outside its range: 

or 
µ(k+l) < 0. 

J 

(c) 
IIRC o<k + 0 <k + ull > o 999IIRC o<k> <k>)II xk + 1 ' ' µ · xk ' ' µ 

This completes the description of the combined method. 
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It has been shown by Hald and Madsen (1985), that the method has safe 

global convergence properties: it can only converge to stationary points . 

Furthermore, the final rate of convergence is at least super linea r , i.e., 

(C.7) 

where E:k - 0 fork - oo . 

Necessary Conditions for a Solution 

At a solution x* of the linearly constrained £1 problem (4. 1) the functions 

which are zero play a special role since they contribute to the kinks of F. The 

functions which are non-zero at x* give smooth contributions to F since I ~(x) I is 

smooth near x* when ~(x*) :;t: 0. Therefore we partition F into a smooth and a non-

smooth part, 

F(x) I I f.(x) I + "' I f.(x) I 
J L J 

WZ jEZ 

= g(x) + I I f.(x) I 
J 

(C.8) 
jEZ 

where Z = Z(x*) is defined by (C.4) and g = gx* is smooth in a neighbourhood ofx*. 

It is easily shown (see for instance Charalambous 1979) that the following 

set of equations hold at the local minimum x = x* 

g'(x) + "' 8 f'. (x) L JJ 
jEZ 

f.(x) = 0, 
J 

T 
a x + b. = 0, 

l 

(C.9) 
j E Z, 

i EA, 

where I oi I ::; 1, µi ;:::: 0, Z = Z(x*) and A = A(x*) are defined by (C.4) and (C.5), and 

g(x) = I I f.(x) I . 
J 

jfZ 
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This set of equations corresponds to the Kuhn-Tucker conditions for the 

nonlinear programming problem which is equivalent to (4.1). The unknowns are x, Oj 

and µi, and it is seen that the number of unknowns equals the number of equations. If 

we use a vector notation (C.9) can be expressed as follows, 

R(x, o, µ) = 0. 

Updating the Matrices Jk 

The Jacobian of the nonlinear system (C.9) is 

R'(x, o, µ) = 

g"(x) + L o. ( (x) 
J J 

jEZ 

E F 

0 0 

0 0 

where E and Fare matrices with columns fj'(x),jEZ, and - ai, iEA, respectively. 

(C.10) 

(C.11) 

In Method 2 we need to find an estimate Jk+l to R'(xk+l, o<k+ll, µ<k+ll) . 

This is done as follows. At the iterate Xk estimates Zk and Ak replace Z and A. The 

submatrices E and Fare calculated exactly using fj' (xk), j E Zk, and - ai, i E Ak. 

Only the upper left hand side part of R' needs to be approximated. This is 

done via a modification of the BFGS method, due to Powell (1978). The modification is 

necessary because the upper left hand side of R' is not necessarily positive 

semidefinite at a solution of (4.1). However, it is more stable and not less efficient to 

keep the approximation positive definite. The updating procedure becomes 

T T T T 
Bk+ 1 = Bk - Bk sk sk Bk /[sk Bksk] + zk zk I [ sk zk] 

with 
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(kl (kl (k) (k) y k = G(xk + hk , o , µ ) - G(xk , o , µ ) , 

G(x , o , µ) = g ' (x) + L 8 f'. (x) , 
J J 

j EZk 

0<8::;1, 

(C .12) 

where 8 is defined such that skTzk > 0 which implies that positive definiteness is 

maintained. Notice that when 8 is close enough to O this inequa lity will hold provided 

Bk is positive definite . Normally, however, 8 can be chosen to be 1. Powell's formula 

for calculating 8 is 

(C.13) 

otherwise 

with tk = skTBksk. We have found, however, that Powell's updating procedure 

becomes unstable when 8 is too close to O and therefore we have modified (C .13) . If 8 

found by (C.13) becomes less than 0.5 then we use 8 = 0. This implies that when 

(C .13)gives8 < 0.5thenBk+l = Bk. 

This completes the description of the Jacobian approximation procedure. 
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